大规模MIMO系统中基于深度学习的新型信号检测网络
DOI:
CSTR:
作者:
作者单位:

西安科技大学通信与信息工程学院 西安 710600

作者简介:

通讯作者:

中图分类号:

TN929.5

基金项目:

国家自然科学基金(62471384)项目资助


Deep learning-based novel detection networks for massive MIMO systems
Author:
Affiliation:

School of Communication and Information Engineering,Xi′an University of Science and Technology,Xi′an 710600,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决高阶调制场景下大规模MIMO检测算法的误码性能受限问题,提出一种新型信号检测网络。该网络基于投影梯度下降构建逼近最大似然解的迭代结构,并将迭代过程转化神经网络实现。在每个网络单元中首先通过神经网络学习参数,其次经过所设计的归一化多段激活函数进行非线性变换以增强网络在高阶调制下的映射能力,最后通过去噪器消除估计误差和信道噪声,此外,为了解决在网络深度增加时准确率下降问题,网络单元之间采用残差连接。仿真结果表明,当系统收发天线数为64×32,信噪比为16 dB时,所提出检测网络的误码率接近10-4,与其他检测算法相比,误码率降低一个数量级,表现出接近最优检测算法的误码性能,且具有较好的鲁棒性。

    Abstract:

    To address the limitation of error performance in Massive MIMO detection algorithms under high-order modulation scenarios, a novel detection network is proposed. This network is constructed based on a projected gradient descent framework that approximates the maximum likelihood solution through an iterative structure, which is then implemented using a neural network. In each network module, parameters are first learned through a neural network, followed by a nonlinear transformation using a designed normalized multi-segement activation function to enhance the network′s mapping capability under high-order modulation. Finally, a denoiser is employed to eliminate estimation errors and channel noise. Furthermore, to tackle the issue of accuracy degradation with increased network depth, residual connections are introduced between network modules. Simulation results show that when the number of transmitting and receiving antennas of the system is 64×32 and the signal-to-noise is 16 dB, the bit error rate of the proposed detection network is close to 10-4, and the bit error rate is reduced by an order of magnitude compared with other detection algorithms, showing the bit error performance close to the optimal detection algorithm, and has good robustness.

    参考文献
    相似文献
    引证文献
引用本文

康晓非,井溢洋,郭含玉.大规模MIMO系统中基于深度学习的新型信号检测网络[J].电子测量技术,2025,48(24):159-166

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告