基于GTDBO-Perceiver的工件装配预测控制方法
DOI:
CSTR:
作者:
作者单位:

1.华北理工大学电气工程学院 唐山 063210; 2.唐山市先进测试与控制技术重点实验室 唐山 063210

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

河北省高等学校科学技术研究项目(CXY2024013)、教育部产学合作协同育人项目(220804992272302)资助


Predictive control of workpiece assembly based on GTDBO-Perceiver
Author:
Affiliation:

1.College of Electrical Engineering, North China University of Science and Technology,Tangshan 063210, China; 2.Tangshan Key Laboratory of Advanced Measurement and Control Technology,Tangshan 063210, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂装配中建模困难、模型泛化能力弱等问题,提出一种融合改进蜣螂算法(GTDBO)与Perceiver模型的位姿预测方法。首先,建立理想装配体并采集六维扰动下的装配特征,通过插值构建耦合数据集。之后,Perceiver模型学习特征偏差与位姿偏差之间的非线性映射关系,并借助GTDBO优化关键超参数。该算法结合了博弈论平衡控制、自适应角度扰动及动态觅食策略。在CEC2017测试集上的实验表明,该算法的收敛速度与解质量均优于对比算法。最后,在两类工件的预测控制实验中,将该模型与雅可比法、BP网络、SVR及原始Perceiver模型进行对比。结果显示,GTDBO-Perceiver在测试集上的MAE分别达到6.72×10-2和9.96×10-2,其能在有限控制次数内将偏差收敛至公差范围,并在缺陷件场景下实现误差均衡分配,体现出良好的泛化能力。

    Abstract:

    Aiming at the problems of modeling difficulty and weak model generalization ability in complex assemblies, a position prediction method fusing the Improved Dung Beetle Algorithm (GTDBO) and Perceiver model is proposed. First, the ideal assembly is built and the assembly features under six-dimensional perturbation are collected, and a coupled dataset is constructed by interpolation. After that, the Perceiver model learns the nonlinear mapping relationship between feature deviation and positional deviation and optimizes its key hyperparameters with the help of GTDBO. The algorithm combines game-theoretic equilibrium control, adaptive angular perturbation and dynamic foraging strategies. Experiments on the CEC2017 test set show that the algorithm outperforms the comparison algorithms in terms of convergence speed and solution quality. Finally, the model is compared with Jacobian′s method, BP networks, SVR and the original Perceiver model in predictive control experiments on two types of artifacts. The results show that GTDBO-Perceiver achieves MAEs of 6.72×10-2 and 9.96×10-2 on the test set, respectively. Its ability to converge the deviation to the tolerance range within a finite number of control times and to achieve a balanced distribution of errors in defective piecewise scenarios demonstrates a good generalization capability.

    参考文献
    相似文献
    引证文献
引用本文

王一,付智超,程佳,张靖轩.基于GTDBO-Perceiver的工件装配预测控制方法[J].电子测量技术,2025,48(20):154-167

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码