基于改进 ResNet-50 的智能流式细胞分析方法
DOI:
CSTR:
作者:
作者单位:

河海大学信息科学与工程学院 常州 213022

作者简介:

通讯作者:

中图分类号:

TN929.52

基金项目:

国家自然科学基金(62371181)项目资助


Intelligent flow cytometry analysis system method based on improved ResNet-50
Author:
Affiliation:

College of Information Science and Engineering, Hohai University, Changzhou 213022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    流式细胞术是一种广泛应用于生命科学研究和临床诊断的高通量检测技术,然而传统流式细胞仪在面对复杂的数据维度和噪声干扰严重的情况下表现不佳,为了提高流式细胞术处理多参数,高维数据的能力,同时保证数据的及时性和准确性,提出了一套智能流式细胞分析系统。该系统涵盖流式细胞系统硬件设备设计、流式细胞系统软件设计和智能流式细胞分析系统算法设计。硬件层面设计了一个基于FPGA和ARM协同工作的实时数据采集系统,软件层面构建了一个嵌入式Linux架构,提出了一套预处理、解析、和批次归一化方法,在流式数据智能分析层面中,引入自组织映射算法进行数据降维,结合深度学习领域的改进残差网络,构建了一种SE-ResNet-50深度卷积神经网络模型。实验表明,SE-ResNet-50模型与原模型ResNet-50相比,总体准确率提升了4%,精确率提升了3.8%。通过SOM与SE-ResNet-50的协同工作流程,有效地处理流式细胞仪采集的大量高维数据。实验结果证明了该方法的优越性。

    Abstract:

    Flow cytometry is a high-throughput detection technique widely used in life science research and clinical diagnostics. However, conventional flow cytometers exhibit suboptimal performance when handling complex data dimensions and severe noise interference. To enhance the capability of flow cytometry in processing multi-parameter, high-dimensional data while ensuring timeliness and accuracy, this study proposes an intelligent flow cytometry analysis system. The system encompasses hardware design, software architecture, and algorithmic frameworks for flow cytometry. At the hardware level, a real-time data acquisition system was developed based on the cooperative operation of FPGA and ARM. On the software side, an embedded system with a Linux-based architecture was constructed, incorporating a suite of preprocessing, parsing, and batch normalization methods. For intelligent flow cytometry data analysis, a self-organizing mapping algorithm was introduced for dimensionality reduction, combined with an improved residual network from the field of deep learning, resulting in the development of an SE-ResNet-50 deep convolutional neural network model. Experimental results demonstrate that the SE-ResNet-50 model achieves a 4% improvement in overall accuracy and a 3.8% increase in precision compared to the original ResNet-50. The collaborative workflow integrating SOM and SE-ResNet-50 effectively processes the vast amounts of high-dimensional data acquired by flow cytometry. The findings validate the superiority of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

许孔晨,汤怀锋,杨海倩,苏新,陆晓春.基于改进 ResNet-50 的智能流式细胞分析方法[J].电子测量技术,2025,48(18):41-52

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告