iMMI-YOLO:基于残差模块的变压器缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

四川轻化工大学计算机科学与工程学院 宜宾 644000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

四川省科技研发重点项目(2023YFS0371)、四川省智慧旅游研究基地(ZHYJ24-01)、企业信息化与物联网测控技术四川省高校重点实验室开放基金(2024WYJ03)项目资助


iMMI-YOLO: Transformer defect detection algorithm based on residual module
Author:
Affiliation:

School of Computer Science & Engineering, Sichuan University of Science & Engineering, Yibin 644000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前变压器外观缺陷检测存在精度低、模型在复杂场景下泛化能力不足的问题,本文利用残差结构在特征融合与信息保留方面的优势,设计出3个模块对YOLOv11n进行改进。首先设计一种倒置残差注意力机制iEMA,其能够有效利用长距离依赖关系,旨在提升变压器缺陷检测的准确性;其次借助深度可分离卷积在多尺度特征提取方面的优势以及残差结构的特性,设计出MSCB结构,增强模型特征提取与融合能力;由于YOLOv11检测头对目标周围的上下文信息利用不够充分导致漏检,本文提出MR-Detect检测头,其设计理念融合了分组卷积和残差结构的思想,为后续的类别分类提供了丰富的特征表示。最后将非极大值抑制算法与Inner_MPDIoU相结合,以解决传统损失函数在不规则物体和尺寸变化较大的物体上检测的局限性。实验结果表明,本文改进算法相比YOLOv11n,在保证实时检测的同时,mAP@0.5提升了5.9%,召回率提升2.8%,在复杂变压器工况检测场景下检测精度更高,能更有效地检测出各类缺陷。

    Abstract:

    To address the issues of low accuracy and insufficient generalization ability of models in complex scenarios for current transformer appearance defect detection, this paper leverages the residual structure′s merits to improve YOLOv11n with three modules. Firstly, an inverted residual attention mechanism, iEMA, is designed. It can effectively utilize the long-distance dependency and aims to improve the accuracy of transformer defect detection. Secondly, by leveraging the advantages of depthwise separable convolution in multi-scale feature extraction and the characteristics of the residual structure, an MSCB structure is designed to enhance the feature extraction and fusion capabilities of the model. Since, to address missed detections due to insufficient contextual utilization by YOLOv11′s detection head, we design the MR-Detect head. It integrates grouped convolution and residual concepts, offering rich feature representations for classification. Finally, the non-maximum suppression algorithm is combined with Inner_MPDIoU to address the limitations of traditional loss functions in detecting irregular objects and objects with large size variations. Experimental results show that compared with YOLOv11n, the improved algorithm in this paper, while ensuring real-time detection, increases the mAP@0.5 by 5.9% and the recall rate by 2.8%. It has higher detection accuracy in complex transformer operating condition detection scenarios and can more effectively detect various types of defects.

    参考文献
    相似文献
    引证文献
引用本文

吴宇浩,朱文忠. iMMI-YOLO:基于残差模块的变压器缺陷检测算法[J].电子测量技术,2025,48(20):168-178

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码