基于动态重校准与多尺度融合的小目标检测
DOI:
CSTR:
作者:
作者单位:

1.四川轻化工大学自动化与信息工程学院 宜宾 644000; 2.智能感知与控制四川省重点实验室 宜宾 644000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

四川省科技厅项目(2022YFSY0056)资助


Small target detection based on dynamic recalibration and multi-scale fusion
Author:
Affiliation:

1.School of Automation and Information Engineering, Sichuan University of Science & Engineering,Yibin 644000, China; 2.Intelligent Perception and Control Key Laboratory of Sichuan Province,Yibin 644000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍图像中小目标密集分布、尺度变化大、遮挡严重及背景复杂等挑战,本文在轻量级YOLOv11n模型基础上,提出了一种新型小目标检测框架RAD-YOLO,兼顾检测精度与实时性。该模型引入RFM-FPN模块,通过RAU单元与SBA模块强化特征表达;骨干网络中引入RFAConv注意力卷积结构,提升感受野适应能力;后处理阶段提出DDS-Soft-NMS策略,根据目标尺寸自适应调节置信度抑制,显著降低小目标漏检率。实验结果表明,RAD-YOLO在VisDrone2019数据集上mAP@0.5与mAP@0.5:0.95分别提升13.1%与11.4%,精确率和召回率达到0.561和0.411;在AI-TOD和SODA-A数据集上,mAP@0.5分别提升9.9%和7.7%,充分验证了模型在复杂遥感场景中的精度优势与泛化能力。

    Abstract:

    To address the challenges of small object detection in UAV aerial imagery—such as dense distribution, scale variation, occlusion, and complex backgrounds—this paper proposes RAD-YOLO, an improved lightweight detection framework based on YOLOv11n. The model incorporates a RFM-FPN with RAU and SBA to enhance multi-scale feature integration. It also employs RFAConv in the backbone for adaptive spatial modeling, and introduces DDS-Soft-NMS strategy to reduce false suppression based on object scale. Experimental results show that RAD-YOLO improves mAP@0.5 and mAP@0.5:0.95 by 13.1% and 11.4% respectively on the VisDrone2019 dataset, achieving 0.561 precision and 0.411 recall. On AI-TOD and SODA-A datasets, mAP@0.5 improvements of 9.9% and 7.7% further demonstrate its robustness and strong generalization in complex aerial scenarios.

    参考文献
    相似文献
    引证文献
引用本文

蒋行国,陈科,林国军.基于动态重校准与多尺度融合的小目标检测[J].电子测量技术,2025,48(20):209-218

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码