基于雷达时频特征提取和CBAM-MFResNet的人体行为识别
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650500;2.云南省高校物联网技术及应用重点实验室 昆明 650500

作者简介:

通讯作者:

中图分类号:

TN95;TP391

基金项目:

云南省基础研究计划重点项目(202501AS070066)、云南大学研究生实践创新基金(KC-242410505)项目资助


Human action recognition based on radar time-frequency feature extraction and CBAM-MFResNet
Author:
Affiliation:

1.College of Information, Yunnan University,Kunming 650500,China;2.University Key Laboratory of Internet of Things Technology and Application,Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有雷达人体行为识别存在的时频特征表征能力不足,以及神经网络识别准确率较低的问题,提出一种基于雷达时频特征提取和CBAM-MFResNet的人体行为识别方法。在时频特征提取部分,对雷达回波信号进行处理,运用距离窗函数约束行为信号中的频谱能量扩散问题,并沿慢时间维度构建自适应小波阈值-切比雪夫窗函数协同处理机制抑制杂波干扰,通过时频分析获得微多普勒时频图。在网络模型构建部分,构建用于行为识别的CBAM-MFResNet模型,将轻量化卷积注意力机制引入到残差神经网络中,从而增强关键特征表示;同时设计高效的并行多尺度特征学习模块学习多样化特征信息,最大限度地反映不同行为的特征差异;最后,将融合后的特征输入到全连接层进行分类。实验结果表明,本文所提的模型和杂波滤除算法有效提高了识别系统的准确率,对不同人体行为的平均识别准确率达到98%。

    Abstract:

    To solve the problems of insufficient time-frequency feature representation ability and insufficient neural network feature learning in the existing radar human behavior recognition, a human behavior recognition method based on radar time-frequency feature extraction and CBAM-MFResNet is proposed. In the time-frequency feature extraction section, radar echo signals are processed, the distance window function is used to constrain the spectral energy diffusion problem in the behavioral signal, and along the slow time dimension, an adaptive wavelet threshold-Chebyshev window function co-processing mechanism is constructed to suppress clutter interference. Micro-Doppler time-frequency diagrams are obtained by time-frequency analysis. In the network model building section, a CBAM-MFResNet model for behavior recognition is constructed, the lightweight convolutional attention mechanism is introduced into the residual neural network to enhance the representation of key features; and an efficient parallel multi-scale feature learning module was designed to learn diverse feature information to reflect the feature differences of different behaviors to the greatest extent. Finally, the fused features are input into the fully connected layer for classification. Experimental results show that the proposed model and clutter filtering algorithm can effectively improve the accuracy of the recognition system, and the average recognition accuracy of different human behaviors reaches 98%.

    参考文献
    相似文献
    引证文献
引用本文

颜凌岚,常俊,赵楠,胡涛.基于雷达时频特征提取和CBAM-MFResNet的人体行为识别[J].电子测量技术,2025,48(24):204-212

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告