基于空频特征调制的轻量级超分辨率网络设计
DOI:
CSTR:
作者:
作者单位:

1.上海大学机电工程与自动化学院微电子研究与开发中心 上海 200444;2.上海大学微电子学院 上海 201899

作者简介:

通讯作者:

中图分类号:

TP391.4; TN791

基金项目:

国家自然科学基金(62404132)项目资助


Lightweight super resolution network based on spatial-frequency feature modulation
Author:
Affiliation:

1.Microelectronics Research & Development Center,School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;2. School of Microelectronics, Shanghai University, Shanghai 201899, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了克服现有基于自注意力机制的Transformer超分辨率模型在计算复杂度和局部细节捕捉方面的局限性,提出了一种优化的轻量级超分辨率网络结构,旨在协同利用全局、非局部和局部特征来实现更高效的重建。首先,构建了包含动态条带注意力与无偏差动态频域感知的空频特征聚合层用以捕捉全局与非局部特征,确保网络能充分地恢复图像特征。然后,构建了局部细节增强层以对局部上下文编码并进行通道混合,确保图像的细节恢复。最后,由多个空频特征调制块逐级提取特征并进行上采样重建以得到最终的超分辨率图像。本算法在Set14、BSD100、Urban100等5个超分辨率领域的公共数据集上进行了对比分析,其中,在2倍重建任务上,较同为轻量级超分辨率网络的ShuffleMixer相比,在减少了24.2%的FLOPs并使用更小训练集的同时,PSNR与SSIM在Urban100上分别高出了0.54 dB和0.005 5。实验表明,提出的模型在轻量级超分辨率任务中表现优异,并在性能和复杂度之间取得了良好的平衡。

    Abstract:

    To overcome the limitations of existing Transformer-based super-resolution models, which rely on self-attention mechanisms and face challenges in computational complexity and local detail capture, an optimized lightweight super resolution network is proposed. The network aims to efficiently utilize global, non-local, and local features for enhanced reconstruction. First, a spatial-frequency feature aggregation layer, incorporating dynamic strip attention and unbiased dynamic frequency awareness, is used to capture global and non-local features, ensuring that the network can effectively recover image feature. Then, to ensure the restoration of image details, a local detail enhancement layer is constructed to encode local context and perform channel mixing. Finally, multiple spatial-frequency feature modulation blocks progressively extract features and perform up-sampling reconstruction to produce the final super-resolution image. The proposed algorithm was benchmarked on five public super-resolution datasets, including Set14, BSD100, and Urban100. Under the ×2 reconstruction, it reduces FLOPs by 24.2% and requires a smaller training dataset compared with ShuffleMixer, another lightweight super-resolution network, while attaining gains of 0.54 dB in PSNR and 0.0055 in SSIM on the Urban100. Experiments show that the proposed network excels in lightweight super-resolution tasks, achieving a good balance between performance and complexity.

    参考文献
    相似文献
    引证文献
引用本文

顾羽舟,李娇,郭爱英,吴昊辰,陆俊宇.基于空频特征调制的轻量级超分辨率网络设计[J].电子测量技术,2025,48(24):186-194

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告