改进YOLOv8n的托盘目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.新疆大学智能制造现代产业学院(机械工程学院) 乌鲁木齐 830017; 2.中国机械总院集团青岛分院有限公司 青岛 266300

作者简介:

通讯作者:

中图分类号:

TP391; TN919.8

基金项目:

新疆维吾尔自治区自然科学基金(2022D01C391)、天山英才培养计划(2022TSYCLJ0044)项目资助


Improved YOLOv8n algorithm for pallet target detection
Author:
Affiliation:

1.School of Mechanical Engineering Intelligent Manufacturing Modern Industry, Xinjiang University,Urumqi 830017, China; 2.China Academy of Machinery Science & Technology Qingdao Branch Co.,Ltd.,Qingdao 266300,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现实工厂环境下,光线不足、障碍物较多等因素的干扰,时常会对托盘造成漏检、误检等问题,提出一种基于改进YOLOv8n 的托盘目标检测方法。首先,将结合Transformer的BRA稀疏注意力模块加入到 YOLOv8n 模型的主干网络特征提取环节,以减少障碍物遮挡对托盘检测的干扰;其次,引入 Shape-IoU 损失函数,进一步增强了模型在光线不足以及背景干扰严重情况下对托盘的识别能力;最后,利用基于GSConv的Slim-neck结构重构YOLOv8n的特征融合网络,实现轻量化颈部网络。实验结果表明,改进后的算法在测试集上的平均精度均值达到89.6%,相较于原模型提升2.8%,漏检率和误检率分别下降2%和2.2%,有效改善了光线不足和障碍物遮挡情况下托盘识别的漏检和误检问题,同时检测帧率达到330.52 fps,可以快速精准地进行托盘检测识别,适合部署在智能叉车上,以提高运营效率并提升仓库智能化水平。

    Abstract:

    Addressing the issues of missed and false detections of pallets in real factory environments, often caused by factors such as insufficient lighting and numerous obstacles, a tray detection method based on an improved YOLOv8n is proposed. Firstly, the Bi-Level Routing Attention (BRA) sparse attention module combined with Transformer is incorporated into the backbone network feature extraction phase of the YOLOv8n model, to reduce the interference from obstacle occlusion on pallet detection. Secondly, the Shape-IoU loss function is introduced, further enhancing the model′s ability to recognize pallets in conditions of insufficient lighting and severe background interference. Finally, the feature fusion network of YOLOv8n is reconstructed using the GSConv-based Slim-neck structure, achieving a lightweight neck network. Experimental results indicate that the improved algorithm achieves a mean Average Precision (mAP) of 89.6% on the test set, representing a 2.8% improvement compared to the original model. The missed detection rate and false detection rate decrease by 2% and 2.2%, respectively. This effectively mitigates the problems of missed and false detections of pallets in situations of insufficient lighting and obstacle occlusion. Additionally, with a detection frame rate of 312.5 fps, the method enables rapid and accurate pallet detection and recognition, making it suitable for deployment on smart forklifts to enhance operational efficiency and elevate warehouse intelligence levels.

    参考文献
    相似文献
    引证文献
引用本文

刘晓非,薛瑞雷,钟华刚,刘彦君.改进YOLOv8n的托盘目标检测算法[J].电子测量技术,2025,48(20):133-143

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码