基于改进 ConvNeXt和知识蒸馏的蘑菇图像识别方法
DOI:
CSTR:
作者:
作者单位:

陕西科技大学电子信息与人工智能学院 西安 710021

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:

国家自然科学基金(61971272)、陕西科技大学科研启动基金(2020BJ-01)项目资助


Mushroom image recognition method based on improved ConvNeXt and knowledge distillation
Author:
Affiliation:

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi′an 710021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蘑菇种类繁多,尤其有毒蘑菇形态相近,不易识别,高效识别蘑菇种类有重要的现实需求。针对现有蘑菇图像识别方法存在背景复杂,识别精度不高,模型参数量大,移动端部署困难的问题,提出了一种基于改进ConvNeXt模型和知识蒸馏的蘑菇图像识别方法。首先,通过迁移学习将预训练的ConvNeXt权重文件应用于蘑菇识别任务,并引入坐标注意力机制,构建了ConvNeXt_CA模型,有效提升模型的细粒度特征提取能力。其次,基于知识蒸馏技术,将ConvNeXt_CA模型作为教师模型,ShuffleNet v2模型作为学生模型,构建了轻量化MushNet模型。极大提升改进模型部署边缘端的整体效率。最后,进行了相关模型对比实验,结果表明,提出的改进模型准确率达到94.89%,知识蒸馏后的MushNet模型大小约为原来的1/21,均优于其他传统模型和轻量化模型。证明了所提蘑菇图像识别方法的有效性和可行性。

    Abstract:

    There are many kinds of mushrooms, especially poisonous mushrooms, which are similar in shape and difficult to identify. There is an important practical need for efficient identification of mushroom species. In view of the problems of complex background, low recognition accuracy, large number of model parameters and difficult deployment on mobile terminals in existing mushroom image recognition methods, a mushroom image recognition method based on improved ConvNeXt model and knowledge distillation is proposed. Firstly, the pre-trained ConvNeXt weight file is applied to the mushroom recognition task through transfer learning, and the coordinate attention mechanism is introduced to construct the ConvNeXt_CA model, which effectively improves the fine-grained feature extraction ability of the model. Secondly, based on the knowledge distillation technology, the ConvNeXt_CA model is used as the teacher model and the ShuffleNet v2 model is used as the student model to construct a lightweight MushNet model. The overall efficiency of the edge deployment of the improved model is greatly improved. Finally, the relevant model comparison experiments are carried out. The results show that the accuracy of the proposed improved model reaches 94.89%, and the size of the MushNet model after knowledge distillation is about 1/21 of the original, which is better than other traditional models and lightweight models. The effectiveness and feasibility of the proposed mushroom image recognition method are proved.

    参考文献
    相似文献
    引证文献
引用本文

任喜伟,王瑞,贾事端,刘艳,肖曼.基于改进 ConvNeXt和知识蒸馏的蘑菇图像识别方法[J].电子测量技术,2025,48(20):189-199

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码