基于优化SVMD-IBiTCN-BiLSTM模型的短期风电功率预测方法
DOI:
CSTR:
作者:
作者单位:

1.沈阳化工大学计算机科学与技术学院 沈阳 110142; 2.辽宁省化工过程工业智能化技术重点实验室 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TN91;TM614

基金项目:

辽宁省自然基金(2022-MS-291)、国家外国专家项目计划(G2022006008L)、辽宁省教育厅基本科研项目(LJKMZ20220781)资助


Short-term wind power prediction method based on optimized SVMD-IBiTCN-BiLSTM model
Author:
Affiliation:

1.College of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China; 2.Liaoning Key Laboratory of Intelligent Technology for Chemical Process Industry,Shenyang 110142,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    较高的风电功率预测精准度,能够保障电网可持续稳定运行。针对风电数据的波动性和随机性等特征导致预测精准度欠佳的问题,基于分解-预测模型,提出使用连续变分模态分解算法(SVMD)分解数据,双向时间卷积网络(BiTCN)和双向长短期记忆网络(BiLSTM)进行预测为基础的分解预测模型,以提升短期风电功率预测的精准度。使用加入牛顿法增强局部搜索能力的壮丽细尾鹩莺优化算法(SFOA-N)搜寻SVMD的最佳惩罚因子和预测模型的最佳超参数。针对BiTCN中指数增长膨胀率无法适应不同时间序列中的复杂模式的技术难题,提出一种加入动态膨胀率预测模块改进BiTCN的创新方法,可根据输入数据的不同自动调整膨胀率,从而提升预测性能。经本文数据集验证,与单一BiTCN模型对比,基于优化SVMD-IBiTCN-BiLSTM模型的决定系数达到了0.998 2,平均绝对百分比误差、均方根误差和平均绝对误差分别下降了3.57、9.94和7.21,具有较高的预测精度。

    Abstract:

    The accuracy of wind power prediction is crucial for ensuring the sustainable and stable operation of power grids. To address the issue of inadequate prediction accuracy caused by the volatility and stochasticity of wind power data, this study proposes a decomposition-prediction model based on the Successive Variational Mode Decomposition (SVMD) algorithm for data decomposition, combined with a Bidirectional Temporal Convolutional Network (BiTCN) and Bidirectional Long Short-Term Memory Network (BiLSTM) for prediction. The Splendid Fairy-wren Optimization Algorithm enhanced with Newtonian method (SFOA-N) is employed to optimize SVMD′s penalty factor and the hyperparameters of the prediction model, thereby improving local search capability. To resolve the technical challenge that the exponentially growing dilation rate in BiTCN struggles to adapt to complex patterns across different time series, an innovative dynamic dilation rate prediction module is proposed. This module automatically adjusts dilation rates according to varying segments of input data, significantly enhancing prediction performance. Experimental results demonstrate that compared with standalone BiTCN models, the optimized SVMD-IBiTCN-BiLSTM model achieves a coefficient of determination of 0.998 2, with mean absolute percentage error, root mean square error, and mean absolute Error reduced by 3.57, 9.94, and 7.21 respectively, demonstrating superior forecasting accuracy.

    参考文献
    相似文献
    引证文献
引用本文

丁浩展,刘硕,马纪颖.基于优化SVMD-IBiTCN-BiLSTM模型的短期风电功率预测方法[J].电子测量技术,2025,48(23):98-107

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告