基于多模态影像的阿尔兹海默症分类研究
DOI:
CSTR:
作者:
作者单位:

四川大学电子信息学院 成都 610065

作者简介:

通讯作者:

中图分类号:

TN911;TP391.4

基金项目:

四川省重点研发计划(2023YFS0195)、成都市重大科技应用示范项目(2019-YF09-00120-SN)资助


Multimodal imaging-based Alzheimer′s disease classification research
Author:
Affiliation:

College of Electronics and Information Engineering, Sichuan University,Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    阿尔茨海默病 (AD) 是一种神经系统疾病,主要影响人的脑细胞,是痴呆症的主要形式,由于其不可逆的特性,早期诊断对于减缓疾病进展至关重要。结构磁共振成像(sMRI)与氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)是目前在神经退行性疾病研究中被广泛应用的两种成像技术,结合这两种影像来评估大脑状态能提高结果的准确性。本文提出了一种基于Vision Transformer的多模态融合框架,通过自注意力视觉变换器从单模态影像中提取特征,同时利用交互注意力融合网络专注于两种影像特征的相似性,既能强化各模态的独立表征能力,还能提高两种模态的交互性。同时使用深度置信网络降低提取特征的冗余性,提高不同模态的信息互补,最后采用集成分类器做出AD分类结果。选取ADNI数据集,评估了提出网络的分类性能,准确率、敏感性和特异性分别达到了94.65%、93.24%和95.62%,与目前的融合方法相比,所提出的方法在AD分类任务中取得了更优异的结果。

    Abstract:

    Alzheimer′s disease (AD) is a neurological disorder that primarily affects a person′s brain cells and is the main form of dementia; due to its irreversible nature, early diagnosis is critical to slowing the progression of the disease. Structural magnetic resonance imaging (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) are two imaging techniques that are widely used in neurodegenerative disease research, and combining these two images to assess the brain state can improve the accuracy of the results. In this paper, we propose a multimodal fusion framework based on Vision Transformer, which extracts features from unimodal images through a self-attentive vision transformer, and at the same time focuses on the similarity of the features of the two images by using an interactive attentional fusion network, which strengthens the independent characterization ability of each modality, and also improves the interactivity of the two modalities. At the same time, a deep confidence network is used to reduce the redundancy of the extracted features and improve the complementary information of different modalities, and finally an integrated classifier is used to make AD classification results. The ADNI dataset is selected and the classification performance of the proposed network is evaluated, and the accuracy, sensitivity and specificity reach 94.65%, 93.24% and 95.62%, respectively, and the proposed method achieves superior results in the AD classification task compared to current fusion methods.

    参考文献
    相似文献
    引证文献
引用本文

陈洛,王正勇,卿粼波,陈洪刚,何小海.基于多模态影像的阿尔兹海默症分类研究[J].电子测量技术,2025,48(23):11-20

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告