UltraLight CrackNet:基于VMamba的轻量化裂缝分割网络
DOI:
CSTR:
作者:
作者单位:

四川轻化工大学计算机科学与工程学院 宜宾 644000

作者简介:

通讯作者:

中图分类号:

TP391.41;TN919.8

基金项目:

四川省科技计划重点研发项目(2023YFS0371)、企业信息化与物联网测控技术四川省高校重点实验室开放基金(2024WYJ03)、四川省智慧旅游研究基地(ZHYJ24-01)、四川轻化工大学研究生创新基金(Y2024115)项目资助


UltraLight CrackNet: A VMamba-based lightweight network for crack segmentation
Author:
Affiliation:

School of Computer Science and Engineering, Sichuan University of Science and Engineering,Yibin 644000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    裂缝检测在土木基础设施维护中具有关键作用。传统人工视觉检测方法存在诸多缺陷,推动了裂缝检测技术的持续发展。然而,现有裂缝检测技术仍面临复杂背景干扰、特征多样性干扰及高计算资源需求的挑战。本研究挖掘Mamba模型在视觉任务中的潜力,提出一种超轻量裂缝检测网络(UltraLight CrackNet),其包含3个核心模块:并行轻量化视觉Mamba模块(通过高效建模长程依赖关系提取深层语义特征)、多尺度残差视觉状态空间模块(增强多尺度特征表征能力),以及改进的语义细节融合模块(优化编码器解码器架构的跳跃连接机制)。实验表明,该方法仅需0.13 M参数量与1.96 G浮点运算量,在超轻量模型设计下,于DeepCrack和Crack500数据集分别取得87.85%和77.92%的平均交并比mIoU),达到最优性能;在SteelCrack数据集获得可比结果,且参数量较现有对比模型中参数量最小的模型降低87.85%。

    Abstract:

    Crack detection is crucial in the maintenance of civil infrastructure. The many drawbacks of traditional manual visual inspection methods have led to the continuous development of crack detection methods. However, existing crack detection techniques face the challenges of complex backgrounds and feature diversity interference, and the high computational resource requirements. This study exploits the potential of Mamba for visual tasks and proposes an UltraLight CrackNet, which consists of a parallel lightweight visual Mamba block for efficiently modelling long-distance dependencies and extracting deep semantic features, a multi-scale residual visual state space block for enhanced multi-scale feature representation, and an enhanced semantics and detail infusion module for optimising skip connections within the encoder-decoder architecture. The experimental results show that our method requires only 0.13 M parameters and 1.96 G FLOPs, and achieves the optimal performance on DeepCrack and Crack500 datasets with ultra-lightweight model design, with the mean intersection over union (mIoU) of 87.85% and 77.92%, respectively, and obtains comparable results on SteelCrack dataset, and the number of parameters is 87.85% lower than that of the model with the smallest number of parameters among the available comparison models.

    参考文献
    相似文献
    引证文献
引用本文

成荣,朱文忠,王文. UltraLight CrackNet:基于VMamba的轻量化裂缝分割网络[J].电子测量技术,2025,48(22):224-234

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告