基于CBiGRU-Attention的波浪能转换装置模型预测控制
DOI:
CSTR:
作者:
作者单位:

1.淮阴工学院自动化学院 淮安 223003; 2.东南大学仪器科学与工程学院 南京 21009

作者简介:

通讯作者:

中图分类号:

TN712

基金项目:

国家自然科学基金项目面上项目(62173159)、淮安市自然科学研究项目(HAB202226)、江苏省高等学校自然科学研究面上项目(23KJB460005)资助


Model predictive control of wave energy conversion based on CBiGRU-Attention
Author:
Affiliation:

To address the issues of low power capture efficiency, slow dynamic response, and weak interference resistance faced by direct-drive wave energy conversion devices in complex sea conditions, this paper proposes a control algorithm that combines neural networks with model prediction. By enhancing system robustness through a high-precision wave excitation force prediction model and combining it with a rolling optimization algorithm under multi-objective constraints, the device achieves maximum power generation under irregular wave conditions. First, a three-stage fusion prediction model with spatio-temporal feature decoupling capability is constructed. Compared to traditional models, this model reduces the mean squared error and mean absolute error of irregular wave excitation force prediction by 39.96% and 63.39%, respectively, with a temporal fitting accuracy of 98.9%. The prediction model is then embedded into a rolling optimization framework, where high-precision irregular wave excitation force predictions provide feedforward disturbance compensation for control, aligning motor current with the current at maximum power, thereby achieving the goal of maximizing power generation. Experiments demonstrate that the improved model predictive control achieves significant breakthroughs compared to the traditional autoregressive integral moving average model method under two irregular wave conditions (JS and PM) with wave heights of 0.3~0.6 m and periods of 3~6 s: average power increases by 50%~141%, and cumulative energy increases by 38%~189%, validating the significant advantages of the proposed method in enhancing the comprehensive performance and dynamic robustness of direct-drive wave energy conversion systems.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对直驱式波浪能转换装置在复杂海况下面临的功率捕获效率低、动态响应慢以及抗干扰能力弱等问题,本文提出了一种神经网络与模型预测结合的控制算法,通过高精度波浪激振力预测模型增强系统鲁棒性,并结合多目标约束下的滚动优化算法,使装置在不规则波况下的发电功率最大化。首先构建具有时空特征解耦能力的三阶段融合预测模型,其对不规则波浪激振力预测的均方误差和平均绝对误差较传统模型分别降低39.96%和63.39%,时序拟合度达98.9%。随后将该预测模型嵌入滚动优化框架,高精度的不规则波浪激振力预测为控制提供前馈扰动补偿,使电机电流与功率最大化时的电流契合,从而实现发电功率最大化的目标。实验表明改进后的模型预测控制在波高0.3~0.6 m和周期3~6 s的JS与PM两种不规则波况下,相比于传统的自回归积分滑动平均模型方法实现显著突破:平均功率提升50%~141%,累计能量增长38%~189%,验证了所提方法在提升直驱式波浪能转换综合性能与动态鲁棒性方面的显著优势。

    Abstract:

    To address the issues of low power capture efficiency, slow dynamic response, and weak interference resistance faced by direct-drive wave energy conversion devices in complex sea conditions, this paper proposes a control algorithm that combines neural networks with model prediction. By enhancing system robustness through a high-precision wave excitation force prediction model and combining it with a rolling optimization algorithm under multi-objective constraints, the device achieves maximum power generation under irregular wave conditions. First, a three-stage fusion prediction model with spatio-temporal feature decoupling capability is constructed. Compared to traditional models, this model reduces the mean squared error and mean absolute error of irregular wave excitation force prediction by 39.96% and 63.39%, respectively, with a temporal fitting accuracy of 98.9%. The prediction model is then embedded into a rolling optimization framework, where high-precision irregular wave excitation force predictions provide feedforward disturbance compensation for control, aligning motor current with the current at maximum power, thereby achieving the goal of maximizing power generation. Experiments demonstrate that the improved model predictive control achieves significant breakthroughs compared to the traditional autoregressive integral moving average model method under two irregular wave conditions (JS and PM) with wave heights of 0.3~0.6 m and periods of 3~6 s: average power increases by 50%~141%, and cumulative energy increases by 38%~189%, validating the significant advantages of the proposed method in enhancing the comprehensive performance and dynamic robustness of direct-drive wave energy conversion systems.

    参考文献
    相似文献
    引证文献
引用本文

张宇翔,刘世豪,沈骞,张磊,李易.基于CBiGRU-Attention的波浪能转换装置模型预测控制[J].电子测量技术,2025,48(23):133-143

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告