基于KmeansSMOTE与领域自适应的化工过程故障诊断
DOI:
CSTR:
作者:
作者单位:

新疆大学机械工程学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TP277;TQ086;TN911

基金项目:

新疆维吾尔自治区重点研发计划项目(2023B01031-2)资助


Fault diagnosis of chemical processes based on KmeansSMOTE and domain adaptation
Author:
Affiliation:

School of Mechanical Engineering, Xinjiang University,Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对化工过程中由于多变量传感数据的时间依赖性导致的特征耦合、工况变化带来的数据分布偏移以及样本数据不平衡等问题,提出了将K均值合成少数类过采样技术与条件对抗域适应相结合的化工过程故障诊断框架。首先,通过时间窗口分割技术将原始一维数据转换为多个二维时间窗口数据,在这些窗口内采用KmeansSMOTE方法对少数类故障样本进行扩充,扩充后得样本能够保留完整的时序故障特征,同时该算法还能减少生成噪声样本的数量;然后,使用领域自适应技术对齐源域与目标域的特征分布,减少两者间的分布差异,使得基于源域训练的故障诊断模型能够在新工况下有效识别故障类别;最后,通过使用田纳西——伊斯曼过程的故障数据进行诊断实验,并通过与CDAN、DANN以及JDA等模型进行诊断率对比,验证了所提方法的有效性。

    Abstract:

    A fault diagnosis framework for chemical processes is proposed, which combines K-means synthetic minority oversampling techniquewith conditional adversarial domain adaptation to address issues such as feature coupling caused by the temporal dependence of multivariate sensing data, data distribution shift caused by changes in operating conditions, and imbalanced sample data in chemical processes. Firstly, the original one-dimensional data is converted into multiple two-dimensional time window data using time window segmentation technology. Within these windows, the Kmeans SMOTE method is used to expand the minority class fault samples. The expanded samples can retain the complete temporal fault features, and this algorithm can also reduce the number of generated noise samples; then, domain adaptation techniques are used to align the feature distributions of the source domain and the target domain, reducing the distribution differences between the two and enabling the fault diagnosis model trained on the source domain to effectively identify fault categories under new operating conditions; finally, diagnostic experiments were conducted using fault data from the Tennessee Eastman process, and the effectiveness of the proposed method was validated by comparing its diagnostic rates with models such as CDAN, DANN, and JDA.

    参考文献
    相似文献
    引证文献
引用本文

卫亚楠,谢俊,吕凯,朱荣,李财年.基于KmeansSMOTE与领域自适应的化工过程故障诊断[J].电子测量技术,2025,48(22):20-27

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告