基于改进YOLOv10n的滚动轴承表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院 唐山 063200

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

河北省自然科学基金(D2024209006)、河北省教育厅科学研究项目(QN2024147)资助


Surface defect detection of rolling bearings based on improved YOLOv10n
Author:
Affiliation:

School of Electrical Engineering, North China University of Science and Technology,Tangshan 063200, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有算法在滚动轴承表面缺陷检测时检测精度较低,模型参数量大,实时性较差等问题,提出一种改进YOLOv10n的滚动轴承表面缺陷检测算法。在主干网络上,利用GhostConv、MSMHSA模块和CGLU模块对C2f重新设计,构建CGMC2f模块,增强模型的特征提取能力,降低模型的参数量;在SPPF中,结合GroupConv、Residual-Conv和Fusion-Conv对SPPF-LSKA模块进行设计,构建新的GRFSPPF-LSKA模块,有效解决了信息丢失问题,提升模型的多尺度特征提取和融合能力;在Neck网络上,结合BIFPN的多尺度特征加权融合、MAF-YOLO网络和EMCAD模块,构建EMBS-FPN网络,提高模型的检测精度,降低了模型的参数量,使模型轻量化;借鉴Focal-loss思想,优化CIoU损失函数为Focaler-CIoU,加快模型的收敛速度。实验结果表明,改进后的YOLOv10n的mAP达到了92.6%,相较于原模型提高了2.7%,参数量降低了0.45 M,计算量降低了0.6 GFLOPs,更好的满足滚动轴承表面缺陷实时性检测要求。

    Abstract:

    Aiming at the problems of low detection accuracy, large model parameters, and poor real-time performance of existing algorithms in surface defect detection of rolling bearings, an improved YOLOv10n rolling bearing surface defect detection algorithm is proposed. On the backbone network, redesign C2f using GhostConv, MSMHSA module, and CGLU module, construct CGMC2f module to enhance the model′s feature extraction capability and reduce the model′s parameter count; in SPPF, the SPPF-LSKA module is designed by combining GroupConv, Residual-Conv, and Fusion-Conv modules to construct a new GRFSPPF-LSKA module, effectively solving the problem of information loss and improving the model′s multi-scale feature extraction and fusion capabilities; on the Neck network, combining the multi-scale feature weighted fusion of BIFPN, MAF-YOLO network, and EMCAD module, an EMBS-FPN network is constructed to improve the detection accuracy of the model, reduce the number of model parameters, and make the model lightweight; drawing on the Focal-loss approach, optimize the CIoU loss function to Focaler-CIoU to accelerate the convergence speed of the model. The experimental results showed that the improved YOLOv10n achieved a mAP of 92.6%, an increase of 2.7% compared to the original model, a reduction of 0.45 M in parameter count, and a decrease of 0.6 GFLOPs in computational complexity, better meeting the real-time detection requirements of rolling bearing surface defects.

    参考文献
    相似文献
    引证文献
引用本文

王海群,陈晓宇,于海峰.基于改进YOLOv10n的滚动轴承表面缺陷检测[J].电子测量技术,2025,48(23):204-214

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告