基于改进MCANet-CM的多模态遥感图像分割算法
DOI:
CSTR:
作者:
作者单位:

东北林业大学计算机与控制工程学院 哈尔滨 150040

作者简介:

通讯作者:

中图分类号:

TP751; TN958

基金项目:

国家自然科学基金(32202147)项目资助


Multimodal remote sensing image segmentation algorithm based on improved MCANet-CM
Author:
Affiliation:

College of Computer Science and Control Engineering, Northeast Forestry University,Harbin 150040, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    合成孔径雷达图像与可见光图像通过不同的维度采集地表特征,为土地分类研究领域提供高度互补的信息,具有重要的应用价值。然而,现有MCANet-CM算法在跨模态特征交互过程中,难以有效捕捉多模态数据中目标轮廓,导致融合特征对复杂场景下目标边界的空间细节表征能力较弱,这使得如何有效结合两类模态数据以实现精准的像素级分类,仍然是目前的关键问题。针对这一问题,本文提出了基于改进 MCANet-CM 的多模态遥感图像语义分割算法。算法中提出了DyCPCA注意力机制,该机制通过动态校准通道间的依赖关系,自适应地增强与目标轮廓相关的特征响应,有效提升了模型对多模态数据中细节信息的捕捉能力;同时引入矩形自校准模块,该模块通过构建非对称的感受野结构,增强了模型对不同方向边缘信息的感知能力,显著提高了模型对前景对象的定位精度。通过这两个模块的协同作用,实现了光学数据与 SAR 数据的有效融合。在WHU-OPT-SAR数据集上进行实验,相较于基准模型MCANet-CM,改进模型在平均交并比与平均F1分数上分别提高了2.85%与2.81%。与FTransUNet等先进算法对比,改进模型同样实现了更好的分割效果。

    Abstract:

    Synthetic Aperture Radar and optical images capture surface features through distinct dimensions, providing highly complementary information for land classification research with significant application value. However, existing MCANet-CM algorithms struggle to effectively capture target contours in multimodal data during cross-modal feature interaction, resulting in insufficient spatial detail representation of fused features for object boundaries in complex scenarios. This makes the effective integration of dual-modal data for precise pixel-level classification remain a critical challenge. To address this issue, this paper proposes an enhanced multimodal remote sensing image semantic segmentation algorithm based on improved MCANet-CM. The algorithm introduces the DyCPCA attention mechanism, which dynamically calibrates inter-channel dependencies to adaptively enhance feature responses related to target contours, thereby significantly improving the model′s capability to capture fine-grained information from multimodal data. Simultaneously, a Rectangular Self-Calibration Module is incorporated, which constructs an asymmetric receptive field structure to strengthen the model′s perception of edge information across different orientations, markedly enhancing localization accuracy for foreground objects. Through the synergistic operation of these two modules, effective fusion of optical and SAR data is achieved. Experiments on the WHU-OPT-SAR dataset demonstrate that compared with the baseline MCANet-CM model, the improved model achieves 2.85% and 2.81% enhancements in mean Intersection over Union and mean F1-score, respectively. When compared with state-of-the-art algorithms like FTransUNet, the proposed model also exhibits superior segmentation performance.

    参考文献
    相似文献
    引证文献
引用本文

胡峻峰,杨泳.基于改进MCANet-CM的多模态遥感图像分割算法[J].电子测量技术,2025,48(23):69-77

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告