多策略改进的人工旅鼠算法及工程应用
DOI:
CSTR:
作者:
作者单位:

桂林理工大学广西高校先进制造与自动化技术重点实验室 桂林 541006

作者简介:

通讯作者:

中图分类号:

TP301.6;TN7

基金项目:

广西科技计划项目-广西重点研发计划(桂科AB22080093)、梧州市中央引导地方科技发展资金项目(202201001)、国家自然科学基金(61863009)项目资助


Multi-strategy improved artificial lemming algorithm and engineering applications
Author:
Affiliation:

Key Laboratory of Advanced Manufacturing and Automation Technology,Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology,Guilin 541006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工旅鼠算法是一种新提出的元启发式算法,能够通过模拟旅鼠的4种不同行为,有效探索复杂的搜索空间,但该算法仍存在过早收敛、探索不足、缺乏鲁棒性以及易陷入局部最优。针对上述问题,本文提出一种多策略改进的人工旅鼠算法,首先,引入Halton序列实现初始种群均匀分布,以提升全局搜索能力;其次,结合精英池策略与惯性权重,避免搜索过度依赖最优个体,增强种群的跳跃搜索能力,从而抑制早熟收敛;最后,在算法迭代后期引入非线性权重的黄金正弦策略,与觅食行为相结合,以提高局部搜索的精度与稳定性。为验证改进算法的性能,本文选取CEC2017测试函数集进行实验,并采用Wilcoxon秩和检验进行统计分析。实验结果表明,改进后的算法在收敛速度、寻优精度以及稳定性方面均优于5种对比算法,相较于原算法平均值误差降低了27.36%,标准差平均降低了36.99%,在3个工程优化问题中,改进后的算法均取得了最小目标函数值,优于对比算法,表现出较好的适用性和优越性。

    Abstract:

    The artificial lemming algorithm is a newly proposed metaheuristic method that simulates four distinct behaviors of lemmings to effectively explore complex search spaces. However, it still suffers from premature convergence, limited exploration, lack of robustness, and susceptibility to local optima. To address these limitations, a multi-strategy improved artificial lemming algorithm is proposed. First, the Halton sequence is employed to generate a uniformly distributed initial population, enhancing global search capability. Second, an elite pool strategy combined with inertia weights is introduced to reduce excessive reliance on the best individuals and to improve the population′s ability to jump across the search space, thereby suppressing premature convergence. Finally, a nonlinear weighted golden sine strategy, combined with foraging behavior, is incorporated in the later stages of iteration to enhance the precision and stability of local search. To verify the performance of the improved algorithm, experiments are conducted on the CEC2017 benchmark function set, and statistical analysis is performed using the Wilcoxon rank-sum test. Experimental results show that the improved algorithm outperforms five comparative algorithms in terms of convergence speed, optimization accuracy, and stability. Compared to the original algorithm, the improved version achieves an average error reduction of 27.36% and a reduction of 36.99% in the average standard deviation. In three engineering optimization problems, the improved algorithm obtains the minimum objective function values in all cases, demonstrating better applicability and superiority over the comparative methods.

    参考文献
    相似文献
    引证文献
引用本文

杨原,陈明霞,陆俊良,严一踔.多策略改进的人工旅鼠算法及工程应用[J].电子测量技术,2025,48(22):98-111

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告