基于双编码器的鼻中隔医学图像分割模型
DOI:
CSTR:
作者:
作者单位:

1.大连海洋大学信息工程学院 大连 116023;2.大连理工大学附属中心医院 大连 116033

作者简介:

通讯作者:

中图分类号:

TP391;TN911

基金项目:

辽宁省教育厅项目(LJKMZ20221110)、大连市卫生健康委项目(2111004, 2211006)资助


Dual encoder-based nasal septum medical image segmentation model
Author:
Affiliation:

1.College of Information Engineering, Dalian Ocean University,Dalian 116023, China; 2.Dalian Municipal Central Hospital,Dalian 116033, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鼻中隔解剖结构的精准分割对病症评估及手术规划具有重要临床价值,然而现有基于卷积神经网络(CNN)的方法在全局特征表征方面存在局限性。为此,本研究创新性地构建CTA-Net模型,通过双分支编码架构实现局部-全局特征协同学习:CNN分支捕捉解剖结构细节特征,Transformer分支建模长距离空间依赖关系,并设计特征融合模块实现特征信息交互。特别在瓶颈层引入多尺度特征注意力机制,通过自适应感受野调整增强模型对复杂解剖结构的表征能力。实验验证采用自主标注的鼻中隔临床数据集及ISIC 2018、Kvasir共3个医学数据集进行对比实验,结果显示本模型在鼻中隔分割任务中IoU和Dice分别达到90.38%和94.94%。在跨数据集对比实验中,胃肠镜图像分割任务上的IoU精度达76.17%,显著优于其他现有模型,证实了模型在特征学习能力和泛化适应性方面的优势。本研究为医学图像分析提供了一种融合局部感知与全局建模的创新性解决方案,在耳鼻喉科智能诊疗领域具有重要应用前景。

    Abstract:

    Accurate segmentation of the nasal septum anatomical structure holds significant clinical value for disease assessment and surgical planning. However, existing methods based on Convolutional Neural Network (CNN) exhibit limitations in global feature representation. To address this issue, this study innovatively constructs the CTA-Net model, which achieves local-global feature collaborative learning through a dual-branch encoding architecture: the CNN branch captures fine anatomical details, while the Transformer branch models long-distance spatial dependencies, and a feature fusion module is designed to enable effective information exchange. Particularly, a multi-scale feature attention mechanism is introduced in the bottleneck layer to enhance the model′s capability to represent complex anatomical structures through different receptive fields. Experiments were conducted on three medical datasets—a self-annotated clinical dataset of the nasal septum, ISIC 2018, and Kvasir. The results demonstrate that, in the nasal septum segmentation task, the model achieves IoU and Dice coefficients of 90.38% and 94.94%, respectively. In cross-dataset experiments, the IoU accuracy for gastrointestinal endoscopic image segmentation reached 76.17%, significantly outperforming other existing models, thereby confirming the model′s advantages in feature learning and generalization. This study provides an innovative solution for medical image analysis by integrating local perception with global modeling, and it holds significant promise for intelligent diagnosis and treatment in the otolaryngology field.

    参考文献
    相似文献
    引证文献
引用本文

周宝康,曹爽,高洪涌,宋维波,崔树林.基于双编码器的鼻中隔医学图像分割模型[J].电子测量技术,2025,48(15):150-158

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告