基于AR二维码的轻量化YOLOv8目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与化自动学院 焦作 454003; 2.河南省煤矿装备智能检测与控制重点实验室 焦作 454003

作者简介:

通讯作者:

中图分类号:

TP391.7;TN98

基金项目:

国家自然科学基金(62273133)项目资助


Lightweight YOLOv8 target detection algorithm based on AR code
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University,Jiaozuo 454003, China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment,Jiaozuo 454003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统二维码辅助导航的检测方法在复杂工业、物流运输场景中存在识别失败的情况,本研究通过使用成熟且可以提供相对位姿信息的AR码,提出了一种改进的轻量化YOLOv8-AR模型来进一步增强识别效率。在网络模型方面,主干引入超强轻量级StarNet网络来降低目标检测的算法计算量;在颈部网络中优化并构建C2f-EMSC模块,以增强复杂环境下AR码特征的提取,同时降低了计算负载;此外,本文提出了轻量级细节增强共享卷积检测头LSDECD-H,以提高细节特征表达能力,从而提升小目标和多目标的检测精度。实验结果表明,该模型的参数量和计算量分别为1.46M和4.7GFLOPs,仅为基线的51%和42%,在帧率满足实时检测情况下,mAP高达0.962,具有较高的鲁棒性。在解码之前快速确定其位置,从而提升识别效果来达到精确定位,适合于二维码路标导航等应用场景。

    Abstract:

    Aiming at the recognition failure of traditional 2D code detection methods for assisted navigation in complex industrial, logistics and transport scenarios, this study proposes an improved and lightweight YOLOv8-AR model to further enhance the recognition efficiency by using AR codes that are mature and can provide relative positional information. In terms of the network model, the backbone introduces an ultra-strong lightweight StarNet network to reduce the algorithmic computation of target detection; the C2f-EMSC module is optimised and constructed in the neck network to enhance the extraction of AR code features in complex environments and reduce the computational load at the same time; moreover, a lightweight detail-enhanced shared convolutional detection head LSDECD-H is proposed to improve the detail feature expression capability, so as to improve the detection accuracy of small targets and multi-targets. The experimental results show that the parametric and computational quantities of the model are 1.46M and 4.7GFLOPs, which are only 51% and 42% of the baseline, and the mAP is as high as 0.962 with high robustness in the case that the frame rate meets the real-time detection. It can quickly determine the position before decoding, and improve the recognition effect to achieve precise positioning, making it suitable for application scenarios like 2D code road sign navigation.

    参考文献
    相似文献
    引证文献
引用本文

崔立志,杨德朝.基于AR二维码的轻量化YOLOv8目标检测算法[J].电子测量技术,2025,48(22):57-65

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告