基于改进冠豪猪算法山地环境无人机航迹规划
DOI:
CSTR:
作者:
作者单位:

1.南京航空航天大学电子信息工程学院 南京 210016; 2.南京航空航天大学无人机研究院 南京 210016; 3.南京航空航天大学民航学院 南京 210016

作者简介:

通讯作者:

中图分类号:

TP18;TN911;TN391

基金项目:

中国高校产学研创新基金(2021ZYA04004)项目资助


UAV trajectory planning in mountainous environment based on improved crowned porcupine algorithm
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China; 2.Institute of Unmanned Aerial Vehicle Research, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China; 3.Civil Aviation College, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现代战争需求推动了多无人机协同在军事领域的应用,为解决面临雷达、火炮等多威胁山地环境下的多无人机航迹规划问题,提出了一种改进的冠豪猪优化算法(BCPO)。对于种群缺乏多样性的问题,引入了结合反向学习的佳点集初始化,加大算法的遍历程度;针对冠豪猪算法(CPO)的开发阶段提出了基于自适应小扰动的螺旋搜索策略,进一步激发算法的全局搜索性能;针对CPO算法的探索阶段,引入了基于最优随机位置的变异三角形游走策略,有助于提高算法局部收敛效率;提出融合动态因子的莱维飞行策略,帮助算法在全局搜索和局部寻优间寻求更好的平衡。在CEC2017测试函数上进行仿真对比,验证BCPO算法具有优秀的收敛速率和精准度;通过模拟山地环境进行仿真实验,表明BCPO算法相比CPO、GWO、WOA算法平均提升性能为8.834%、5.776%、21.828%,且算法稳定性有了大幅提升,该方法在面临复杂场景的多无人机航迹规划问题中具有较好的应用价值。

    Abstract:

    The demand of modern warfare has propelled the application of multi-UAV collaboration in the military field. To address the problem of trajectory planning for multiple UAVs in a multi-threat mountainous environment with radar, artillery, and other threats, an improved Crested Porcupine Optimizer (CPO) algorithm, namely BCPO, is proposed.To tackle the issue of population diversity, the algorithm incorporates an initialization method combining opposition-based learning and good-point set initialization, which enhances the algorithm′s traversal capability. For the development phase of the CPO algorithm, a spiral search strategy based on adaptive small perturbations is introduced to further boost the global search performance. In the exploration phase of the CPO algorithm, a mutation triangle walk strategy based on the optimal random position is added to improve the local convergence efficiency. Additionally, a L-vy flight strategy with dynamic factors is proposed to help the algorithm achieve a better balance between global search and local optimization.Simulations on the CEC2017 test functions demonstrate that the BCPO algorithm has excellent convergence speed and accuracy. In a simulated mountainous environment, the BCPO algorithm shows an average performance improvement of 8.834%, 5.776%, and 21.828% compared to the CPO, GWO and WOA, respectively. Moreover, the stability of the algorithm is significantly enhanced. This method has good application value in solving multi-UAV trajectory planning problems in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

李尧,黄大庆,殷奇缘,徐文校,王嘉瑞.基于改进冠豪猪算法山地环境无人机航迹规划[J].电子测量技术,2025,48(22):89-97

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告