基于MTCNN和PFLD的疲劳驾驶检测方法
DOI:
CSTR:
作者:
作者单位:

1.无锡学院自动化学院 无锡 214105; 2.南京信息工程大学自动化学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

江苏省产学研合作项目(BY20230688)资助


Fatigue driving detection method based on MTCNN and PFLD
Author:
Affiliation:

1.School of Automation, Wuxi University,Wuxi 214105, China; 2.School of Automation, Nanjing University of Information Science and Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对驾驶员疲劳检测方法中存在面对光照变化或复杂背景时人脸检测精度下降的局限性,提出一种改进的MTCNN网络。通过对MTCNN网络进行优化,在3个子网络中均引入坐标注意力机制和批量归一化算法,提高模型对驾驶员面部的定位精度,提升网络的收敛速度和稳定性,并增强对过拟合的抑制。实验结果表明:改进MTCNN模型在疲劳驾驶数据集上的准确率达到了98.78%,比原模型提高了2.43%,且模型参数量仅为0.5 M,具有良好的人脸检测精度和可部署性。此外,将改进MTCNN模型与PFLD模型结合,根据实验设定了合理的疲劳参数阈值,并实现了较为准确的疲劳驾驶检测。

    Abstract:

    Aiming at the limitation of face detection accuracy degradation when facing light changes or complex background in driver fatigue detection methods, an improved MTCNN network is proposed. By optimising the MTCNN network, the coordinate attention mechanism and batch normalisation algorithm are introduced in all three sub-networks to improve the model′s localisation accuracy of the driver′s face, enhance the convergence speed and stability of the network, and enhance the suppression of overfitting. The experimental results show that the accuracy of the improved MTCNN model on the fatigue driving dataset reaches 98.78%, which is 2.43% higher than that of the original model, and the number of parameters of the model is only 0.5 M, which has good face detection accuracy and deployability. In addition, combining the improved MTCNN model with the PFLD model, a reasonable fatigue parameter threshold is set based on the experiments, and a more accurate fatigue driving detection is achieved.

    参考文献
    相似文献
    引证文献
引用本文

宋志强,李明阳,周鹏.基于MTCNN和PFLD的疲劳驾驶检测方法[J].电子测量技术,2025,48(22):214-223

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告