Bi-EMamba:基于Mamba的高压电缆接地电流预测模型
DOI:
CSTR:
作者:
作者单位:

华北电力大学控制与计算机工程学院 北京 102206

作者简介:

通讯作者:

中图分类号:

TP391.4;TM615;TN929.5

基金项目:

国家自然科学基金(62301220)项目资助


Bi-EMamba: A Mamba-based prediction model for ground currents in high-voltage cable
Author:
Affiliation:

School of Control and Computer Engineering, North China Electric Power University,Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高压电缆接地电流是保障电缆运行安全与稳定的关键指标,其精准预测对于故障预防和提升电网可靠性具有重要意义。针对传统时序预测模型在预测精度和计算效率上的局限性,本文提出了一种基于Mamba架构的接地电流预测模型——Bi-EMamba模型。模型通过构建时空依赖关系编码器,显著增强了对多变量时间序列中长期依赖关系和空间关联性的建模能力,同时提升了模型的记忆性能。为应对非平稳数据问题,模型引入可逆归一化进行数据归一化处理,并通过超参数优化进一步提升了模型预测精度和泛化能力。基于北京某高压电缆线路数据集的实验结果表明,Bi-EMamba在多种预测步长下均显著优于现有基准模型,尤其在长期预测场景中展现出更强的泛化性和计算效率。与当前SOTA模型iTransformer相比,Bi-EMamba的均方误差降低了6.52%,平均绝对误差降低了3.21%,内存使用量降低了29.49%。

    Abstract:

    Ground current in high-voltage cable systems serves as a critical indicator for ensuring operational safety and stability. Accurate ground current prediction is crucial for fault prevention and enhancing grid reliability. To address the limitations of traditional time-series prediction models in terms of prediction accuracy and computational efficiency, this paper proposes a ground current prediction model based on the Mamba architecture, referred to as the Bi-EMamba model. Through a spatiotemporal dependency encoder, the model effectively captures long-term dependencies and spatial correlations in multivariate time series while maintaining high memory efficiency. To address the challenge of non-stationary data, the model incorporates Reversible Instance Normalization for data normalization and employs hyperparameter optimization to further improve prediction accuracy and generalization capability. Experimental results based on a dataset from a high-voltage cable line in Beijing demonstrate that Bi-EMamba outperforms existing benchmark models across various prediction horizons. Notably, in long-term forecasting scenarios, it exhibits superior generalization and computational efficiency. Compared to the current state-of-the-art model, iTransformer, Bi-EMamba achieves a 6.52% reduction in Mean Squared Error, a 3.21% reduction in Mean Absolute Error, and a 29.49% reduction in memory usage.

    参考文献
    相似文献
    引证文献
引用本文

周景,董晖,刘心,唐振洋. Bi-EMamba:基于Mamba的高压电缆接地电流预测模型[J].电子测量技术,2025,48(22):66-77

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告