改进YOLOv8的非机动车违规行为检测方法
DOI:
CSTR:
作者:
作者单位:

1.新疆大学电气工程学院 乌鲁木齐 830017; 2.新疆大学智能科学与技术学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TN407

基金项目:

中央引导地方科技发展资金(ZYYD2025CG06)、国家自然科学基金(62303394)、新疆维吾尔自治区自然科学基金(2022D01C693)、新疆维吾尔自治区高校基本科研业务费科研项目(XJEDU2023P025)资助


Improved YOLOv8-based method for non-motor vehicle violation detection
Author:
Affiliation:

1.School of Electrical Engineering, Xinjiang University,Urumqi 830017, China; 2.School of Intelligent Science and Technology, Xinjiang University,Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前检测算法在非机动车不规范驾驶行为检测容易出现漏检误检的问题,提出一种改进YOLOv8的非机动车违规行为检测方法YOLO-CSSM。首先在Backbone和Neck中构建了SPD-Conv网络模块,以提高对微小目标的学习能力,加强模型在复杂背景条件下的特征提取能力;其次分别在Backbone和Neck网络中引入DCNv2和SegNext Attention注意力机制模块,重新设计了C2f-DCNv2,突出非机动车和驾驶人重要特征信息,提高模型特征融合能力;最后使用WIoU损失函数的思想改进MPDIoU,将原CIoU替换为Wise-MPDIoU,用来解决正负样本不均衡带来的问题。该算法在自建非机动车不规范驾驶行为数据集上进行验证,实验结果显示,改进后的YOLOv8算法在自建非机动车不规范行为驾驶数据集上的精确率P、召回率R和平均精度均值mAP@0.5为89.4%、90.0%和93.6%,比传统的YOLOv8算法分别提升了3.3%、5.4%和4.5%,取得了更好的检测精度和效果。并以非机动车违规行为检测算法为基础,使用PyQT5设计开发了非机动车违规行为识别检测系统。

    Abstract:

    Addressing the issue of false negatives and positives in non-motor vehicle irregular driving behavior detection with the current detection algorithm, an improved target detection algorithm, YOLO-CSSM, was proposed based on YOLOv8. The Backbone and Neck were enhanced with an SPD-Conv network module, which improved the model′s ability to learn from small targets and extract features under complex backgrounds. Subsequently, DCNv2 and SegNext Attention modules were integrated into the Backbone and Neck networks, respectively, to emphasize important feature information of non-motor vehicles and drivers, enhancing the model′s feature fusion capability. The MPDIoU was improved using the concept of the WIoU loss function, replacing the original CIoU loss function with Wise-MPDIoU to mitigate the imbalance between positive and negative samples. Validated on a self-built dataset of non-motor vehicle irregular driving behaviors, the improved YOLOv8 algorithm demonstrated precision, recall and mean average precision (mAP@0.5) of 89.4%, 90.0% and 93.6%, respectively, showing improvements of 3.3%, 5.4% and 4.5% over the traditional YOLOv8 algorithm, achieving better detection accuracy and effectiveness.And Based on the non-motorized vehicle violation detection algorithm, a non-motorized vehicle violation recognition and detection system was designed and developed using PyQT5.

    参考文献
    相似文献
    引证文献
引用本文

李强,南新元,蔡鑫,杨仕伟.改进YOLOv8的非机动车违规行为检测方法[J].电子测量技术,2025,48(22):166-176

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告