融合M2Net的子空间优化逆散射成像方法
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学电子与信息工程学院 南京 210044

作者简介:

通讯作者:

中图分类号:

O451;TN011

基金项目:

国家自然科学基金(62071238)项目资助


Subspace-optimized inverse scattering imaging method integrated with M2Net
Author:
Affiliation:

School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对提升现有逆散射成像算法精度的需求和抗噪声性能具有局限性的问题,本文提出了一种基于随机方差缩减的子空间优化法与M2Net深度网络融合的逆散射成像方法。该方法在优化的SOM框架下引入随机方差缩减梯度法,通过使用两层循环结构,在每次迭代中随机抽取少量样本进行更新,以修正项来减少方差并提升计算效率。在此基础上,构建了包含多尺度层的M型残差块的U形嵌套模型M2Net网络结构,并将初始重构结果作为输入数据用于M2Net的训练,实现对散射体结构的进一步高精度重构。该方法与传统方法相比,在结构相似性方面提升10%~30%,在均方根误差方面降低5%~15%,表明所提出方法在抗噪性能方面表现优异,并能够实现高精度的图像重建。

    Abstract:

    In response to the demand for improving the accuracy of existing backscatter imaging algorithms and the limitations of noise resistance, this paper proposes an inverse scattering imaging method based on the integration of Subspace Optimization Method with Variance Reduction and the M2Net. Within the optimized SOM framework, the Stochastic Variance Reduced Gradient method is introduced, employing a two-layer loop structure that randomly samples a small subset of data in each iteration to update the model, thereby reducing variance through correction terms and improving computational efficiency. Building upon this, a U-shaped nested model called M2Net, incorporating M-shaped residual blocks with multi-scale layers, is constructed. The initial reconstruction results are used as input data for the deep network training of M2Net, enabling further high-precision reconstruction of the scatterer structure. Compared with traditional methods, this method improves structural similarity by 10%~30% and reduces root mean square error by 5%~15%, indicating excellent noise resistance performance and the ability to achieve high-precision image reconstruction.

    参考文献
    相似文献
    引证文献
引用本文

朱艳萍,张慕林,陈金立,陈家楠,陈继鑫.融合M2Net的子空间优化逆散射成像方法[J].电子测量技术,2025,48(21):189-198

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码