改进Salience-DETR的多部位小目标病灶检测算法
DOI:
CSTR:
作者:
作者单位:

1.中原工学院人工智能学院 郑州 450007; 2.中原工学院计算机学院 郑州 450007; 3.河南省肿瘤医院放射科 郑州 450008; 4.华北水利水电大学信息工程学院 郑州 450046

作者简介:

通讯作者:

中图分类号:

TP399;TN98

基金项目:

国家自然科学基金(82202270)、河南省自然科学基金青年科学基金(252300420995)、河南省高等学校重点科研项目(24B520048)资助


Improved Salience-DETR for multi-organ small target lesion detection
Author:
Affiliation:

.School of Artificial Intelligence, Zhongyuan University of Technology,Zhengzhou 450007, China; 2.School of Computer Science, Zhongyuan University of Technology,Zhengzhou 450007, China; 3.Department of Radiology, Henan Cancer Hospital,Zhengzhou 450008, China; 4.School of Information Engineering Institute, North China University of Water Resources and Electric Power,Zhengzhou 450046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多部位病灶检测在临床中具有重要意义,但不同部位的病灶在大小和形状上差异较大,且CT图像中病灶区域通常较小、病灶区域与周围背景相似,导致检测难度较大。针对上述问题,提出了一种基于Salience-DETR模型改进的多部位小目标病灶检测算法。首先,设计一种高效空间通道协同注意力机制ESCA,用于对Backbone提取的多尺度特征进行重构,加强模型对病灶重要信息的关注;其次,结合DenseASPP和AugFuison模块对跨层token融合网络进行优化,增强不同层级特征的多尺度融合能力;最后,引入Inner-GIoU损失函数,加速模型收敛并提高小目标病灶的检测性能。实验结果显示,在每张图像假阳性数目为0.5至4的情况下,改进后的模型在公开数据集DeepLesion和外部验证集上的平均检测灵敏度分别达到了83.26%和82.33%。可见,所提算法在多部位小目标病灶检测任务中表现出较高的检测精度和良好的泛化能力,具有一定的实际临床应用价值。

    Abstract:

    Multi-organ lesion detection is of great clinical significance. However, lesions in different anatomical regions vary significantly in size and shape, and in CT images, lesion areas are typically small and similar to surrounding tissues, which increases the difficulty of detection. To address these challenges, this paper proposes an improved multi-organ small lesion detection algorithm based on the Salience-DETR model.Firstly, an Efficient Spatial-Channel Collaborative Attention (ESCA) mechanism is designed to reconstruct the multi-scale features extracted by the backbone, enhancing the model’s focus on important lesion information. Secondly, the DenseASPP and AugFusion modules are incorporated to optimize the cross-layer token fusion network, improving multi-scale feature fusion across different levels. Finally, an Inner-GIoU loss function is introduced to accelerate model convergence and improve the detection performance for small lesions.Experimental results show that, under the condition of 0.5 to 4 false positives per image, the improved model achieves average detection sensitivities of 83.26% and 82.33% on the public DeepLesion dataset and an external validation set, respectively. These results demonstrate that the proposed algorithm achieves high detection accuracy and good generalization performance for multi-organ small lesion detection, with promising potential for real-world clinical applications.

    参考文献
    相似文献
    引证文献
引用本文

张茜,武雨露,郑冰洁,董洁,杨关.改进Salience-DETR的多部位小目标病灶检测算法[J].电子测量技术,2025,48(19):217-224

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码