小样本下基于对比学习的特定辐射源识别
DOI:
CSTR:
作者:
作者单位:

兰州交通大学电子与信息工程学院 兰州 730070

作者简介:

通讯作者:

中图分类号:

TN839

基金项目:

国家自然科学基金(62466032,62366028)、2024年研究生教育教学质量提升工程建设项目(JG202418)、甘肃省青年科学基金(23JRRA1695)、兰州交通大学青年科学基金(2023009)、甘肃省科技重大专项(22ZD6GA041)项目资助


Specific emitter identification based on contrastive learning in limited samples
Author:
Affiliation:

School of Electronic and Information Engineering, Lanzhou Jiaotong University,Lanzhou 730070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在通信特定辐射源识别任务中,针对深度学习网络在训练样本量不足时准确率低的问题,提出了一种基于时频数据增强和对比学习的特定辐射源识别方法。首先,从辐射源信号中提取I/Q信息,经过连续小波变换和Welch功率谱的时频数据增强构建多模态信息,以此对小样本数据进行扩充并送入改进的对比学习网络中进行特征提取,并且设计了一个由交叉熵、监督对比损失的加权和损失函数,充分提取特定辐射源信号的特征,确保两种特征向量分布具有余弦损失的一致性,训练结束后保存成最优模型,最后使用部分训练集数据对模型进行微调。所提出的方法在ADS-B数据集和WiFi数据集上进行了评估,与基线模型进行了比较,还对比了28种数据增强组合方式的效果。实验结果表明,本文所提出的方法比现有方法取得了更优异的效果,并且本文提出的数据增强组合方式效果最优。具体而言,当有标记训练样本数量与所有训练样本数量的比率为5%时,在ADS-B数据集上的识别准确率为87.30%,相较于基线模型提升6%;在WiFi数据集上的识别准确率为94.07%,相较于基线模型提升55.39%。

    Abstract:

    In order to solve the problem of low accuracy of deep learning network when the training sample size is insufficient, a specific radiation source recognition method based on time-frequency data enhancement and contrast learning is proposed. Firstly, I/Q information is extracted from the radiation source signal, and multi-modal information is constructed through continuous wavelet transform and time-frequency data of Welch power spectrum enhancement. In this way, the small sample data is expanded and sent into contrast learning networks for feature extraction. In addition, a weighting and loss function based on cross entropy and supervised contrast loss is designed. The features of specific radiation source signals are fully extracted to ensure that the two feature vector distributions have the consistency of cosine loss, and the optimal model is saved after training. Finally, part of the training set data is used to fine-tune the model. The proposed approach was evaluated on ADS-B dataset and WiFi dataset, compared with baseline models, and compared with 28 data enhancement combinations. Experimental results show that the method proposed in this paper achieves better results than the existing methods, and the data enhancement combination method proposed in this paper has the best effect. Specifically, when the ratio of the number of labeled training samples to the number of all training samples is 5%, the recognition accuracy on the ADS-B dataset is 87.30%, which is 6% higher than that of the baseline model. The recognition accuracy on WiFi data set is 94.07%, which is 55.39% higher than the baseline model.

    参考文献
    相似文献
    引证文献
引用本文

黄逸飞,闫光辉,郑礼,汤春阳.小样本下基于对比学习的特定辐射源识别[J].电子测量技术,2025,48(21):108-118

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码