基于边缘特征增强的YOLOv8n道路缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

西南交通大学机械工程学院 成都 610031

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

中国博士后科学基金面上项目(2021M702711)资助


YOLOv8n road defect detection algorithm based on edge feature enhancement
Author:
Affiliation:

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    道路病害对交通安全、道路使用寿命及行车的舒适度都有一定影响。针对现有的检测算法对于复杂特征的裂缝、坑洞识别精度较低的问题,本文构建了一种基于增强边缘特征的YOLOv8n-Edge道路缺陷检测算法。首先,在骨干网络中引入RFAConv,以避免卷积核参数共享同时扩大感受野。然后设计具有强化边缘特征的Edge Enhance Conv,将高频信息与输入图像融合,强化输入特征。其次,融合Manet和Starnet提出Manet-Star替换部分C2f结构,加强模型的特征提取能力。最后,在浅层网络设计一个旁路分支模块—Sub-GEIM,生成具有不同尺度的边缘特征图,与对应尺度的检测头进行融合以优化目标框定位。结果表明,YOLOv8n-Edge算法显著提高了路面病害的检测效果。虽然带来少量参数量和计算量,但是在预处理的RDD2022数据集上关键指标mAP@50达到了72.1%,较原算法提高3.3%。此外通过泛化实验、对比试验均验证了本文算法的有效性。

    Abstract:

    Road surface defects impact traffic safety, road durability, and driving comfort. To address the low detection accuracy of complex features such as cracks and potholes in existing methods, this paper proposes YOLOv8n-Edge—a road defect detection algorithm based on YOLOv8n with enhanced edge features. RFAConv is integrated into the backbone to enlarge the receptive field while avoiding kernel parameter sharing. An Edge Enhance Conv module is introduced to fuse high-frequency details with the input, reinforcing feature representation. Additionally, the Manet-Star structure, combining Manet and Starnet, replaces parts of the C2f module to boost feature extraction. A shallow-layer auxiliary branch, Sub-GEIM, generates multi-scale edge features that are fused with corresponding detection heads to improve localization accuracy. Experimental results show that YOLOv8n-Edge achieves a mAP@50 of 72.1% on the preprocessed RDD2022 dataset—an improvement of 3.3% over the baseline—while only slightly increasing model complexity. Its effectiveness is further validated through generalization and comparative experiments.

    参考文献
    相似文献
    引证文献
引用本文

曹鸿博,安维胜,梁海鹏,林强.基于边缘特征增强的YOLOv8n道路缺陷检测算法[J].电子测量技术,2025,48(19):183-192

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码