基于改进YOLOv8的接触网异物检测算法
DOI:
CSTR:
作者:
作者单位:

1.新疆大学电气工程学院 乌鲁木齐 830017; 2.清华大学国家计算机集成制造系统工程技术研究中心 北京 100084; 3.中国铁路乌鲁木齐局集团有限公司科学技术研究所 乌鲁木齐 830063

作者简介:

通讯作者:

中图分类号:

U226.8;TN919.8

基金项目:

中国国家铁路集团有限公司青年专项课题(Q2023T002)、新疆维吾尔自治区自然科学基金(2022D01C693)项目资助


Improved YOLOv8 for foreign object detection in catenary systems
Author:
Affiliation:

1.School of Electrical Engineering, Xinjiang University,Urumqi 830017, China; 2.National Computer Integrated Manufacturing System Engineering Technology Research Center, Tsinghua University,Beijing 100084, China; 3.Science and Technology Research Institute of China Railway Urumqi Group Corporation,Urumqi 830063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前的铁路接触网异物检测算法存在检测精度不高和模型过大的问题,本研究提出一种基于改进YOLOv8的接触网异物检测算法(FRDW-YOLOv8)。首先,在主干网络中引入FasterNet模块,从而构建出C2f-Faster模块,降低模型复杂度,提升模型的计算效率;其次,在特征提取阶段引入感受野坐标注意力机制(RFCA),提高模型对于接触网异物区域的关注度,为其分配更多注意力;然后,在颈部网络中采用动态上采样器(Dysample),可以保留接触网异物更多的细节信息;最后,采用WIoU v3损失函数,通过动态调整权重因子,提高检测模型的整体性能。实验结果表明,改进后的算法mAP值达到95.1%,较YOLOv8模型提升了2.8%,模型的计算量和参数量仅为7.3 G和2.7 M。改进后的算法进一步提高了模型的检测精度,且使模型具有轻量化的特性,充分说明改进后的算法检测性能优于目前主流的算法,能够更好地完成铁路接触网异物检测任务。

    Abstract:

    Aiming at the problems of low detection accuracy and large model size existing in the current foreign object detection algorithms for railway catenaries, this study proposes a foreign object detection algorithm for catenaries (FRDW-YOLOv8) based on the improved YOLOv8. Firstly, we propose the integration of a FasterNet module into the backbone network to construct the C2f-Faster module, which effectively reduces model complexity and enhances computational efficiency. Secondly, the Receptive-Field Coordinate Attention mechanism (RFCA) is introduced in the feature extraction stage to increase the model′s attention to the foreign object areas of the catenary and allocate more attention to them. Then, a dynamic upsampler (Dysample) is adopted in the neck network, which can retain more detailed information of the foreign objects on the catenary. Finally, the WIoU v3 loss function is used to improve the overall performance of the detection model by dynamically adjusting the weight factors. The experimental results show that the mAP value of the improved algorithm reaches 95.1%, which is 2.8% higher than that of the YOLOv8 model, and the floating-point operations and the number of parameters of the model are only 7.3 G and 2.7 M respectively. The improved algorithm further improves the detection accuracy of the model and makes the model lightweight. It fully demonstrates that the detection performance of the improved algorithm is superior to the current mainstream algorithms and can better complete the task of detecting foreign objects on railway catenaries.

    参考文献
    相似文献
    引证文献
引用本文

王卓萍,张林鍹,李奕超,陈燕楠.基于改进YOLOv8的接触网异物检测算法[J].电子测量技术,2025,48(23):153-162

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告