融合动态多尺度轻量化无人机小目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.沈阳化工大学计算机科学与技术学院 沈阳 110142; 2.辽宁省化工过程工业智能化技术重点实验室 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

辽宁省自然科学基金(2024-BSLH-214)、辽宁省教育厅基本科研项目(LJKMZ20220781,LJKMZ20220783)资助


Lightweight UAV small target detection algorithm based on dynamic multi-scale fusion
Author:
Affiliation:

1.School of Computer Science and Technology, Shenyang University of Chemical Technology,Shenyang 110142, China; 2.Key Laboratory of Industrial Intelligent Technology of Chemical Process of Liaoning Province,Shenyang 110142, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍图像中因小目标尺度微小、背景复杂干扰以及多尺度特征融合效率低下等问题,提出轻量化检测模型YOLO-DAS。通过构建动态多尺度感知卷积模块DMSConv,增强目标特征捕获能力;设计上下文感知特征重组上采样ADEPT,优化特征图重建过程以提升上下文信息整合精度;采用双向全局-局部空间注意力SCOPE重构颈部网络,通过双向特征交互突破单路径融合局限;增设浅层小目标检测层以强化低层级特征的定位信息提取。实验基于VisDrone2019数据集验证,模型在mAP05和mAP0.5:0.95指标上分别达到39.8%和23.7%,较基准YOLOv8n分别提升了8.4%和5.1%,精准率与召回率同步提升8.1%和7%,参数量减少0.49 M,为无人机航拍图像中小目标检测提供有效解决方案。

    Abstract:

    A lightweight detection model YOLO-DAS was proposed to solve the problems of small target size, complex background interference and low efficiency of multi-scale feature fusion in UAV aerial images. A dynamic multi-scale sensing convolution module DMSConv is constructed to enhance the feature capture capability. The context-aware feature recombination upsampling ADEPT was designed to optimize the feature map reconstruction process to improve the integration accuracy of context information. The neck network is reconstructed using the bidirectional global-local spatial attention SCOPE, and the single path fusion limitation is broken through the bidirectional feature interaction. A shallow small target detection layer is added to strengthen the localization information extraction of low-level features. Based on the VisDrone2019 dataset, the model achieved 39.8% and 23.7% in mAP0.5 and MAP0.5:0.95 indexes, respectively, which increased by 8.4% and 5.1% compared with the benchmark YOLOv8n. The accuracy and recall rate increased by 8.1% and 7% simultaneously, and the number of parameters decreased by 0.49 M. It provides an effective solution for small and medium-sized target detection in UAV aerial images.

    参考文献
    相似文献
    引证文献
引用本文

孙冰男,于思恺,张宇,刘俊,王军.融合动态多尺度轻量化无人机小目标检测算法[J].电子测量技术,2025,48(21):199-206

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码