基于火焰成像的NOx排放混合预测模型SADAE-MSViL
DOI:
CSTR:
作者:
作者单位:

1.人工智能微纳传感山西省重点实验室 太原 030600; 2.太原理工大学集成电路学院 太原 030600; 3.太原理工大学电子信息工程学院 太原 030600

作者简介:

通讯作者:

中图分类号:

TN911.73; TK223

基金项目:

山西省重点研发计划项目(202102030201012)、山西省省筹资金资助回国留学人员科研项目(2024-047)资助


SADAE-MSViL: A hybrid prediction model for NOx emissions based on flame imaging
Author:
Affiliation:

1.Shanxi Provincial Key Laboratory of Artificial Intelligence Micro-Nano Sensing,Taiyuan 030600, China; 2.School of Integrated Circuits, Taiyuan University of Technology,Taiyuan 030600, China; 3.School of Electronic Information Engineering, Taiyuan University of Technology,Taiyuan 030600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    火电厂生物质燃烧过程中产生的NOx对环境造成严重污染,准确预测NOx排放对于降低环境污染至关重要。基于传统数据驱动方法建立的NOx排放预测模型深层特征信息提取不充分,鲁棒性差。针对现存问题提出了基于火焰成像的NOx排放混合预测模型SADAE-MSViL。首先,在对抗降噪自动编码器中引入自注意力机制,实现图像深层特征提取,有效去除噪声干扰。其次,设计尺度为8和16组合的多尺度特征融合机制,充分捕获不同尺度下图像块的火焰频域信息。最后,通过改进Linformer并融合门控低秩注意力机制,在保证模型运行效率的同时提升NOx排放预测精度。实验结果表明,该模型R2达到0.98,RMSE为3.0,预测精度优于其他模型,展现出较高的鲁棒性和可靠性。

    Abstract:

    NOx produced during biomass combustion in thermal power plants causes serious environmental pollution. Accurate prediction of NOx emissions is crucial to reducing environmental pollution. The NOx emission prediction model established based on traditional data-driven methods does not extract deep feature information sufficiently and has poor robustness. To address the existing problems, a hybrid prediction model for NOx emissions based on flame imaging, SADAE-MSViL, is proposed. First, a self-attention mechanism is introduced into the adversarial denoising autoencoder to extract deep features of the image and effectively remove noise interference. Secondly, a multi-scale feature fusion mechanism with a combination of scales of 8 and 16 is designed to fully capture the flame frequency domain information of image blocks at different scales. Finally, by improving Linformer and integrating the gated low-rank attention mechanism, the NOx emission prediction accuracy is improved while ensuring the operating efficiency of the model. Experimental results show that the R2 of the model reaches 0.98 and the RMSE is 3.0. The prediction accuracy is better than other models, showing high robustness and reliability.

    参考文献
    相似文献
    引证文献
引用本文

常胜君,郝润芳,程永强,杨琨,白云鹏.基于火焰成像的NOx排放混合预测模型SADAE-MSViL[J].电子测量技术,2025,48(19):77-85

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码