基于特征优选及Informer的航空发动机剩余寿命预测
DOI:
CSTR:
作者:
作者单位:

1.中国民航大学交通科学与工程学院 天津 300300; 2.中国民航大学航空工程学院 天津 300300

作者简介:

通讯作者:

中图分类号:

TP391.5;TN807

基金项目:

国家自然科学基金(U2433213)、中国民航大学研究生科研创新项目(2023YJSKC08009)资助


Civil aviation engine remaining useful life prediction on optimal feature selection and Informer
Author:
Affiliation:

1.College of Transport Science and Engineering, Civil Aviation University of China,Tianjin 300300, China; 2.College of Aeronautical Engineering, Civil Aviation University of China,Tianjin 300300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空发动机健康监测传感器众多,传感器选择是否得当,将直接影响发动机剩余寿命预测效果。提出一种基于特征优选的传感器选择方法,结合Informer预测剩余寿命,提高了预测的精度。首先利用差分聚类算法对真实的飞行工况进行分类,接着由航空发动机退化机理构建健康因子,利用巡航阶段的数据建立回归树模型,选出重要的传感器,最后基于Informer进行航空发动机剩余寿命的预测。利用NASA最新发布的真实飞行条件下航空发动机退化数据库进行了实验,实验结果表明:与不选择传感器相比,所提方法的预测结果均方根误差下降了14%,平均评分函数下降了29%;与传统的依据传感器退化趋势或传感器变化差异二种选择方法相比,均方根误差分别下降了10%、8%,平均评分函数分别下降了48%、27%;将提出的剩余寿命预测方法与CatBoost、LightGBM、XGBoost、BiLSTM和Transformer算法相比,精度分别提升了36%、24%、14%、6%和5%。

    Abstract:

    There are many sensors for civil aviation engine health monitoring. The proper choice of sensors will directly affect the prediction effect of engine remaining useful life. A sensor selection method based on optimal feature selection is proposed and Informer algorithm is used to predict the remaining useful life, which improves the prediction accuracy. Firstly, the differential clustering algorithm is used to classify the real flight conditions, and the health factors are constructed from the degradation mechanism of civil aviation engine, and the regression tree model is established with the data of cruise stage to select important sensors. Finally, the remaining useful life of civil aviation engine is predicted based on Informer algorithm. Using NASA′s newly released civil aviation engine degradation database under real flight conditions, the experimental results show that the root mean square error of prediction results decreases by 14% and the average scoring function decreases by 29% compared with no sensor selection. Compared with the traditional selection method based on sensor degradation trend or sensor data difference, the root mean square error decreases by 10% and 8% respectively, and the average scoring function decreases by 48% and 27% respectively. Compared with CatBoost, LightGBM, XGBoost, BiLSTM and Transformer algorithms, the accuracy of the proposed remaining life prediction method is improved by 36%, 24%, 14%, 6% and 5%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

卢翔,高新越,王杜,康千灼,何晟.基于特征优选及Informer的航空发动机剩余寿命预测[J].电子测量技术,2025,48(22):10-19

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告