改进鱼鹰优化算法的移动机器人路径规划研究
DOI:
CSTR:
作者:
作者单位:

1.新疆大学机械工程学院 乌鲁木齐 830047; 2.西安交通大学机械工程学院 西安 710049

作者简介:

通讯作者:

中图分类号:

TP242.6;TN965

基金项目:

自治区“天山英才”科技创新领军人才项目(2023TSYCLJ0051)、陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-160)资助


Path planning of mobile robots based on the improved osprey optimization algorithm
Author:
Affiliation:

1.School of Mechanical Engineering, Xinjiang University,Urumqi 830047, China; 2.School of Mechanical Engineering, Xi′an Jiaotong University,Xi′an 710049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统鱼鹰算法求解智能体路径规划问题收敛效率低且易陷入局部最优问题,提出一种改进鱼鹰算法。该算法融合Tent混沌映射,提升种群的多样性,其次,引入权重因子和高斯变异策略,避免算法陷入局部最优,有效提高了全局搜索能力。为验证该算法的有效性,选用10个标准测试函数以及2组复杂度不同的栅格环境进行实验。结果表明改进鱼鹰优化算法在标准测试函数上有较好的收敛性以及收敛速率,并且相较于传统的鱼鹰算法,改进后的鱼鹰算法在环境1 中路径寻优长度均值下降了9.08%,标准差降低了49.18%,在环境2中路径寻优长度均值下降了6.51%,标准差降低了39.62%,体现了较好的路径寻优效果及稳定性。

    Abstract:

    Aiming at the problems that the traditional osprey algorithm has low convergence efficiency and is prone to fall into local optimality when solving the path planning problem of intelligent agents, an improved osprey algorithm is proposed. This algorithm integrates the Tent chaotic mapping to enhance the diversity of the population. Secondly, a weight factor and a Gaussian mutation strategy are introduced to prevent the algorithm from falling into local optimality, effectively improving the global search ability. To verify the effectiveness of this algorithm, 10 standard test functions and 2 sets of grid environments with different complexities are selected for experiments. The results show that the improved osprey optimization algorithm has good convergence and convergence rate on the standard test functions. Moreover, compared with the traditional osprey algorithm, the average value of the path optimization length of the improved osprey algorithm decreases by 9.08% and the standard deviation decreases by 49.18% in Environment 1, and the average value of the path optimization length decreases by 6.51% and the standard deviation decreases by 39.62% in Environment 2, which reflects a better path optimization effect and stability.

    参考文献
    相似文献
    引证文献
引用本文

胡宇哲,张小栋,梁伦玮,陶庆.改进鱼鹰优化算法的移动机器人路径规划研究[J].电子测量技术,2025,48(21):38-46

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码