一种复杂场景无人机图像多尺度目标检测方法
DOI:
CSTR:
作者:
作者单位:

复杂航空系统仿真全国重点实验室 成都 610036

作者简介:

通讯作者:

中图分类号:

TP391;TN01

基金项目:

unayufei99@163.com


A multi-scale target detection algorithm for unmanned aerial vehicle(UAV) images in complex scenarios
Author:
Affiliation:

National Key Laboratory of Complex Aviation System Simulation,Chengdu 610036, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机数据集图像中目标尺度小、特征弱、背景干扰多等不利因素造成的目标检测算法总体精度不高,漏检误检严重的问题,提出了一种用于复杂场景下无人机图像多尺度目标检测的新算法。该算法通过DConv、AIFI和Dyhead等模块的引入,改进了原网络在多尺度目标检测能力上的不足;同时,通过采用DIoU损失函数,提高了模型的收敛能力。在公开数据集VisDrone-DET2019上对多尺度目标进行检测识别,与原网络相比,精确率提升了3.7%;召回率提升了1.2%;平均精度提升了2.3%。同时,通过大量的实验验证,结果显示本文算法具有较强的鲁棒性,综合性能优秀,具有一定的工业应用价值。

    Abstract:

    To deal with the challenges faced by target detection algorithms due to the small scale, weak features, and high background interference in images of a drone dataset, a multi-scale target detection algorithm for unmanned aerial vehicle images in complex scenarios is proposed. This algorithm enhances the overall accuracy, reduces false negatives and positives, through the incorporation of modules such as DConv, AIFI, and Dyhead. These components address the limitations of the original network in handling multi-scale targets. Furthermore, the use of the DIoU loss function improves the model′s convergence capability. The effectiveness of this approach is demonstrated through its application in detecting multi-scale targets on the VisDrone-DET2019 dataset. Compared to the original network, there is a 3.7% increase in precision, a 1.2% increase in recall rate, and a 2.3% improvement in average accuracy. Moreover, extensive experiments demonstrated that the proposed algorithm exhibits strong robustness and excellent overall performance, suggesting significant industrial application potential.

    参考文献
    相似文献
    引证文献
引用本文

詹雨飞.一种复杂场景无人机图像多尺度目标检测方法[J].电子测量技术,2025,48(14):118-127

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码