能效协同均衡的单无人机动态轨迹优化
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学电子与信息工程学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金(62001238)、江苏省科技重大专项(BG2024002)资助


Energy efficiency cooperative balancing-based dynamic trajectory optimization for a single UAV
Author:
Affiliation:

School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在应急通信场景中,无人机作为空中数据采集平台,可以在地震、洪水、森林火灾、矿难、战场等灾害环境中快速部署到灾区,收集物联网无线设备的数据,并将数据传输到指挥中心,提高救援决策的效率。灾后场景中的数据传输任务对传输效率和数据的完整性有着更高的要求,同时由于无人机的电池容量有限,如何用尽可能少的能耗快速完成尽可能多的数据采集,同时确保关键数据完整上传,是灾后数据传输场景中亟需解决的问题。针对上述问题,本文研究了一种由单架无人机辅助的无线通信系统,采用一对多的通信方式和飞行-悬停-通信的数据采集模式,制定了一个联合设备关联、无人机悬停位置和带宽分配的优化问题,以最大化无人机的覆盖效用并最小化其总能量消耗。首先,为了优化无人机的覆盖效用,采用了基于K-means初始化的粒子群算法;然后,为了最小化无人机的能耗,提出了一个基于粒子群的两阶段优化算法,对无人机的悬停位置和带宽分配进行交替优化;特别地,在优化无人机悬停位置时,提出了基于高斯干扰和差分机制的粒子群算法。仿真结果表明,该方法能有效提高无人机的覆盖效用和节能性能,覆盖效用与K-means相比提高了13.15%,能耗相较于仅优化悬停位置的方案相比降低了18.58%,且低于对悬停能耗和飞行能耗分开优化的方案。

    Abstract:

    In emergency communication scenarios, unmanned aerial vehicles (UAVs) serve as aerial data collection platforms that can be rapidly deployed to disaster-stricken areas such as those affected by earthquakes, floods, wildfires, mining accidents and battlefield environments. UAVs are capable of collecting data from wireless IoT devices and transmitting it to the command center, thereby improving the efficiency of rescue decision-making. In post-disaster scenarios, data transmission tasks impose higher requirements on both communication efficiency and data completeness. Meanwhile, the limited energy supply of UAVs makes it challenging to collect large volumes of data efficiently while ensuring the complete transmission of vital information. To address these issues, this paper investigates a wireless communication system assisted by a single UAV, which adopts a multi-user uplink communication mode and a fly-hover-communicate data collection pattern. A joint optimization problem is formulated for device association, UAV hovering location and bandwidth allocation, aiming to maximize the UAV′s coverage utility while minimizing its total energy consumption. First, to enhance the UAV′s coverage utility, a particle swarm optimization (PSO) algorithm initialized with K-means clustering is employed. Then, to minimize energy consumption, we propose a PSO-based two-stage optimization framework that alternately optimizes hovering positions and bandwidth allocation. In particular, a PSO variant incorporating Gaussian perturbation and differential mechanisms is designed for hovering position refinement. Simulation results demonstrate that the proposed method effectively improves both coverage utility and energy efficiency. The coverage utility increased by 13.15% compared to the K-means algorithm, while energy consumption was reduced by 18.24% compared to the approach that only optimizes hovering locations and lower than the scheme where hovering energy and flight energy are optimized separately.

    参考文献
    相似文献
    引证文献
引用本文

张静,谢亚琴.能效协同均衡的单无人机动态轨迹优化[J].电子测量技术,2025,48(22):1-9

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告