基于改进YOLOv11n的通航飞机蒙皮表面损伤检测算法
DOI:
CSTR:
作者:
作者单位:

1.中国民用航空飞行学院空中交通管理学院 广汉 618307; 2.中国民用航空飞行学院广汉分院 广汉 618307

作者简介:

通讯作者:

中图分类号:

TP391;TN919.5

基金项目:

国家重点研发计划(2024YFC3014400)、四川省重点研发计划项目(2024YFTX0078)、四川省科技计划资助(2023NSFSC0753)和中央高校基本科研经费(25CAFUC10036, 25CAFUC03105)项目资助


Aircraft skin surface damage detection algorithm for general aviation based on enhanced YOLOv11n
Author:
Affiliation:

1.College of Air Traffic Management, Civil Aviation Flight University of China,Guanghan 618307, China; 2.Guanghan Branch, Civil Aviation Flight University of China,Guanghan 618307, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对通航飞机蒙皮表面损伤检测智能化水平不足的问题,提出了一种基于改进YOLOv11n的通航飞机蒙皮表面损伤检测算法。首先,替换Adown下采样机制构建多尺度特征融合架构,通过跨层级特征交互与轻量化核设计实现冗余信息动态压缩,降低算法参数量与计算复杂度;其次,设计DySample动态上采样策略,通过可变卷积核形变感知与多任务梯度协同优化,提升模型在不同场景下的泛化能力;再者,引入FASSHead特征聚合检测头,通过渐进式语义融合与边缘感知约束,提升算法对复杂损伤区域的识别能力;最后,增加P2小目标检测层,在浅层网络嵌入高分辨率检测分支,提升对小目标及细节损伤的捕捉能力。最终,通过自主构建的通航蒙皮表面损伤数据集对改进算法效果进行验证。结果表明:改进算法精确率达到87.4%,召回率达到80.4%,mAP值达到86.6%。相较于基准模型YOLOv11n分别提升了2.0%、9.4%、6.7%,显著提升了蒙皮表面损伤的检测性能,为通航飞机智能化检测维修体系奠定理论基础。

    Abstract:

    To address the insufficient intelligent detection of surface damage on general aviation aircraft skins, an improved YOLOv11n-based detection algorithm is proposed. Firstly, the Adown downsampling mechanism is replaced to construct a multi-scale feature fusion architecture, achieving dynamic compression of redundant information through cross-level feature interaction and lightweight kernel design, thereby reducing model parameters and computational complexity. Secondly, a DySample dynamic upsampling strategy is designed, enhancing the model′s generalization across different scenarios via variable convolutional kernel deformation perception and multi-task gradient collaborative optimization. Furthermore, the FASSHead feature aggregation module is introduced, improving the algorithm′s recognition capability for complex damage areas through progressive semantic fusion and edge-aware constraints. Finally, a P2 small object detection layer is added, embedding high-resolution detection branches in shallow networks to enhance the capture of small objects and detailed damages. The improved algorithm was validated using a self-built dataset of general aviation skin surface damages. Results show that the precision reached 87.4%, recall reached 80.4%, and mAP attained 86.6%. Compared with the baseline model YOLOv11n, these metrics improved by 2.0%, 9.4% and 6.7% respectively, significantly enhancing the detection performance of skin surface damage and laying a theoretical foundation for an intelligent detection and maintenance system for general aviation aircraft.

    参考文献
    相似文献
    引证文献
引用本文

夏正洪,钟吉飞,张军,赵亮.基于改进YOLOv11n的通航飞机蒙皮表面损伤检测算法[J].电子测量技术,2025,48(22):206-213

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告