基于改进PatchCore的内存散热片表面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.华北电力大学自动化系 保定 071003; 2.保定市电力系统智能机器人感知与控制重点实验室 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

国家自然科学基金面上项目(62373151)、国家自然科学基金联合项目(U21A20486)、中央高校基本科研业务费项目(2023JC006)、河北省自然科学基金(F2020502009,F2021502008)项目资助


Surface defect detection algorithm for memory heat sink based on improved PatchCore
Author:
Affiliation:

1.Department of Automation,North China Electric Power University,Baoding 071003,China; 2.Baoding Key Laboratory of Intelligent Robot Perception and Control in Electric Power System, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业产品表面缺陷检测作为智能制造质量控制的核心环节,其检测精度与实时性高低对工业生产至关重要。针对现有无监督异常检测方法在复杂工业场景下面临的局部特征敏感性不足、计算冗余度高等关键问题,提出一种基于PatchCore的改进型多尺度特征融合检测算法。首先,通过引入自注意力机制的多尺度特征融合处理方式,对layer3特征图进行自注意力机制与平均池化的融合处理,增强算法对局部与全局异常特征的捕捉能力;提出通道聚合降维方法,将原始特征随机划分为若干连续子组,并对每组特征进行聚合操作生成低维特征,达到减少计算冗余的同时保留部分原始特征局部信息;构建迁移学习模型,增强算法在异常检测任务中的泛化能力,提高实际工业项目的检测精度。通过对内存散热片图像进行缺陷检测实验,结果表明,改进算法相较原算法AUROC提升2.28%,F1Score提升4.89%,能够满足工业场景下高效率高精度的需求。

    Abstract:

    As the core link of intelligent manufacturing quality control, the detection accuracy and real-time performance of surface defects in industrial products are crucial for industrial production. Aiming at the key problems of insufficient local feature sensitivity and high computational redundancy faced by existing unsupervised anomaly detection methods in complex industrial scenarios, an improved multi-scale feature fusion detection algorithm based on PatchCore is proposed. Firstly, by introducing a multi-scale feature fusion processing method with self attention mechanism, the layer 3 feature map is fused with self attention mechanism and average pooling to enhance the algorithm′s ability to capture local and global abnormal features; propose a channel aggregation dimensionality reduction method, which randomly divides the original features into several continuous subgroups and aggregates each group of features to generate low dimensional features, achieving the goal of reducing computational redundancy while preserving some local information of the original features; build transfer learning models to enhance the algorithm′s generalization ability in anomaly detection tasks and improve the detection accuracy of actual industrial projects. Through defect detection experiments on memory heat sink images, the results show that the improved algorithm improves AUROC by 2.28% and F1Score by 4.89% compared to the original algorithm, which can meet the requirements of high efficiency and high precision in industrial scenarios.

    参考文献
    相似文献
    引证文献
引用本文

李冰,干根政,刘松言,张鑫磊,翟永杰.基于改进PatchCore的内存散热片表面缺陷检测算法[J].电子测量技术,2025,48(23):163-171

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告