基于表示学习和动态阈值优化的航天器异常检测方法
DOI:
CSTR:
作者:
作者单位:

四川大学电气工程学院 成都 610065

作者简介:

通讯作者:

中图分类号:

TP206+.3;TN98

基金项目:

四川省科技计划(2025YFHZ0157)项目资助


Spacecraft anomaly detection method based on representation learning and dynamic threshold optimization
Author:
Affiliation:

College of Electrical Engineering, Sichuan University,Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航天器本身结构复杂且工作环境多变,而针对航天器的异常检测是监测航天器状态,保障航天任务成功执行的关键。由于航天器遥测数据具有非平稳性且包含噪声,因此传统异常检测方法针对遥测数据进行异常检测存在检测精度低、适应性差等问题。本文提出了一种融合表示学习与动态阈值优化的智能异常检测框架,以提升航天器数据异常检测的准确性与可靠性。首先,通过堆叠自编码器对高维时序数据进行非线性降维,提取低维本质特征以抑制噪声干扰;其次,使用神经电路策略模型对特征数据进行建模,利用其仿生稀疏结构与自适应时间常数机制对数据进行预测;最后,引入多目标优化算法动态调整异常判定阈值,兼顾异常检测的精确率与召回率,解决固定阈值在数据分布突变场景下的检测效果不佳的问题。在仿真数据集的漂移异常检测实验中,本文所提方法的异常检测的F1分数比LSTM、Transformer和TFT 3种方法分别高了65.1%、50.5%和8.8%。而在真实卫星数据集的实验中,本文所提方法较3个对比方法的F1分数分别高了53.0%、51.0%和41.0%。在两个航天器数据集上的实验表明,本方法较对比方法显著提高了预测准确性。本文所提方法为航天器在轨自主健康管理提供了一个新的技术途径,对提升深空探测任务的安全性与可靠性具有重要意义。

    Abstract:

    Spacecraft exhibit intricate structural designs and operate in highly dynamic environments, where anomaly detection plays a pivotal role in monitoring spacecraft status and ensuring mission success. Traditional anomaly detection methods face challenges of low accuracy and poor adaptability when applied to non-stationary and noise-contaminated telemetry data. This paper proposes an intelligent anomaly detection framework integrating representation learning with dynamic threshold optimization to enhance detection accuracy and reliability. The methodology comprises three key components. First, a stacked autoencoder performs nonlinear dimensionality reduction on high-dimensional time-series data to extract low-dimensional intrinsic features while suppressing noise interference. Second, a Neural Circuit Policies model with bio-inspired sparse connectivity and adaptive time constant mechanisms is employed for temporal pattern modeling and prediction. Finally, a multi-objective optimization algorithm dynamically adjusts anomaly thresholds to balance precision and recall, effectively addressing the performance degradation of fixed thresholds under abrupt data distribution shifts. In the drift anomaly detection experiments on the simulation dataset, the proposed method achieved F1-score improvements of 65.1%, 50.5% and 8.8% compared to LSTM, Transformer and TFT methods, respectively. For the real-world satellite dataset, our approach demonstrated superior performance with F1-score enhancements of 53.0%, 51.0% and 41.0% over the same three baseline methods. Experimental results on two spacecraft datasets demonstrate that the proposed method significantly improves prediction accuracy compared to baseline methods. The proposed framework establishes a novel technical approach for on-orbit autonomous health management of spacecraft, with substantial implications for enhancing the safety and reliability of deep space exploration missions.

    参考文献
    相似文献
    引证文献
引用本文

胡自航,张玉杰,苗强.基于表示学习和动态阈值优化的航天器异常检测方法[J].电子测量技术,2025,48(14):1-9

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码