基于改进RT-DETR的道路缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.长江大学电子信息与电气工程学院 荆州 434023; 2.长江大学地球物理与石油资源学院 武汉 430058

作者简介:

通讯作者:

中图分类号:

TN911.73;TP183

基金项目:

国家自然科学基金(62273060)项目资助


Road defect detection based on an optimized RT-DETR model
Author:
Affiliation:

1.College of Electronic Information and Electrical Engineering, Yangtze University,Jingzhou 434023, China; 2.College of Geophysics and Petroleum Resources, Yangtze University,Wuhan 430058, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    道路破损增加了交通事故的发生概率,严重威胁交通安全。因此,实时监测路面状况对于保障道路安全和有效管理基础设施至关重要。针对现有道路缺陷检测中精度不足和小目标检测困难的问题,本文提出了一种基于改进RT-DETR的道路缺陷检测算法。首先,通过引入部分卷积(PConv)对RT-DETR主干网络进行重构,从而有效降低计算开销;其次,在主干网络中融合三重注意力机制,提升模型对多维特征的感知能力,进而更精准地捕捉图像细节。接着,采用双向特征金字塔网络(BiFPN)优化CCFM特征融合模块,并引入S2特征,增强小目标的检测性能。最后,利用DySample上采样算子获取更多局部细节与语义信息,进一步提升模型对小目标的检测能力。实验结果表明,改进后的算法在RDD2022数据集上的mAP@50较原始RT-DETR模型提升了3.6%,且参数量减少了12.5%,检测速度达到66 fps。与其他目标检测算法相比,改进算法在检测精度和速度方面均表现出显著优势,具有更好的实际应用前景。

    Abstract:

    Road damage increases the likelihood of traffic accidents, posing a serious threat to traffic safety. Therefore, real-time monitoring of road conditions is crucial for ensuring road safety and effectively managing infrastructure. To address the issues of insufficient detection accuracy and small target detection challenges in existing road defect detection methods, this paper proposes an improved RT-DETR-based road defect detection algorithm. First, partial convolution (PConv) is introduced to reconstruct the RT-DETR backbone network, effectively reducing computational overhead. Second, a triplet attention mechanism is integrated into the backbone network to enhance the model′s sensitivity to multi-dimensional features, enabling more precise capture of image details. Next, a BiFPN-based feature pyramid network is employed to optimize the CCFM feature fusion module, and S2 features are introduced to improve the detection performance of small targets. Finally, the DySample upsampling operator is utilized to capture more local details and semantic information, further enhancing the model′s ability to detect small targets. Experimental results show that the improved algorithm achieves a 3.6% increase in mAP@50 on the RDD2022 dataset compared to the original RT-DETR model, with a 12.5% reduction in the number of parameters and a detection speed of 66 fps. Compared with other object detection algorithms, the improved algorithm demonstrates significant advantages in both detection accuracy and speed, making it more suitable for practical applications in road defect detection.

    参考文献
    相似文献
    引证文献
引用本文

李涛,孙祥娥.基于改进RT-DETR的道路缺陷检测算法[J].电子测量技术,2025,48(23):172-181

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告