基于特征重构的工业图像无监督异常检测
DOI:
CSTR:
作者:
作者单位:

上海应用技术大学智能技术学部 上海 201418

作者简介:

通讯作者:

中图分类号:

TN06;TN911.73

基金项目:

国家自然科学基金(52408343)项目资助


Unsupervised industrial anomaly detection based on feature reconstruction
Author:
Affiliation:

Faculty of Intelligent Technology, Shanghai Institute of Technology,Shanghai 201418, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    异常检测是现代工业制造中的一项重要任务,由于异常样本的稀缺性,仅需正常样本训练的无监督检测引起了广泛关注,其中,重构式检测因其简洁、通用的框架得到普遍应用。然而,现有算法多基于图像进行重构,异常和正常区域之间的区分度不够,同时,由于工业图像中异常位置、大小的未知性强,现有算法无法很好的捕获样本的整体结构特征。针对以上问题,本文提出了一种基于特征重构的工业图像异常检测算法。首先,利用预训练模型提取多尺度特征来作为重构对象,避免了像素空间重构对异常鉴别力不够的状况;其次,设计了一种全局特征提取模块来增强重构模型对全局特征的感知能力;最后,设计一种特征重组策略来联合训练重构模型,以进一步增强模型对样本整体结构的理解,从而提升重构的效果。在MVTec-AD上进行的大量实验表明,所提算法在样本级异常检测上实现了98.7%的AUROC分数,在像素级异常定位上实现了98.3%的AUROC分数,均达到了最先进的性能。

    Abstract:

    Anomaly detection is an important task in modern industrial manufacturing. Due to the scarcity of abnormal samples, unsupervised detection that only requires normal sample training has attracted widespread attention. Among them, reconstruction based detection has been widely applied due to its concise and universal framework. However, existing algorithms are mostly based on image reconstruction, thus the discrimination between abnormal and normal regions is insufficient. At the same time, due to the strong uncertainty of abnormal positions and sizes in industrial images, existing algorithms cannot capture the overall structural features of samples well. This article proposed an industrial image anomaly detection algorithm based on feature reconstruction to address the above issues. Firstly, the use of pre trained models to extract multi-scale features as reconstruction objects avoids the situation where pixel space reconstruction has insufficient ability to distinguish anomalies; secondly, a global feature extraction module was designed to enhance the perception ability of the reconstruction model towards global features; finally, design a feature recombination strategy to jointly train the reconstruction model, in order to further enhance the model′s understanding of the overall structure of the samples and improve the reconstruction effect. A large number of experiments conducted on MVTec AD have shown that the proposed algorithm achieves an AUROC score of 98.7% in sample level anomaly detection and 98.3% in pixel level anomaly localization, both of which have reached state-of-the-art performance.

    参考文献
    相似文献
    引证文献
引用本文

陆畅,李文举,王旭彬,杨康.基于特征重构的工业图像无监督异常检测[J].电子测量技术,2025,48(22):78-88

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告