基于CNN-BiLSTM模型的多场景窃电检测与类型判别研究
DOI:
CSTR:
作者:
作者单位:

1.广西电网有限责任公司 南宁 530022;2.四川大学电气工程学院 成都 610065

作者简介:

通讯作者:

中图分类号:

TN98;TP206+.3

基金项目:

四川省科技计划项目(2025YFHZ0157)资助


Multi-scenario electricity theft detection and type discrimination study based on a CNN-BiLSTM model
Author:
Affiliation:

1.Guangxi Power Grid Co., Ltd.,Nanning 530022, China;2.College of Electrical Engineering,Sichuan University, Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了避免因窃电行为造成的安全隐患与经济损失,同时为了高效精准的找出窃电用户并且对其窃电模式准确类型判别,提出了一种基于CNN和BiLSTM相结合的窃电检测与类型判别方法。首先,采用包含16种用电用户类型的基于开放能源数据倡议数据集,针对六种不同的窃电模式对数据进行篡改,同时对数据进行了Min-Max归一化处理;接下来,模型通过卷积层提取多尺度局部特征,利用膨胀卷积进一步扩展感受野,有效捕捉环境干扰下的细微变化;随后,采用BiLSTM对时序数据进行正反向建模,从而全面捕捉长距离依赖关系和上下文信息。为提高模型的鲁棒性和泛化能力,本文还引入了Dropout和动态学习率调整机制。最后,通过在二分类、六分类和七分类任务下进行实验,对比不同训练集比例的结果,实验表明所提方法在准确率、AUC和F1-score等指标上均显著优于传统方法,验证了模型在复杂场景下的检测和类型判别能力。

    Abstract:

    In order to mitigate the security risks and economic losses caused by electricity theft, and to efficiently and accurately identify theft users while discriminating their theft patterns, propose an electricity theft detection and type discrimination method that integrates a convolutional neural network(CNN) with a bidirectional long short-term memory(BiLSTM) network. Initially, an open energy data initiative(OEDI) dataset comprising 16 types of electricity users is employed. The dataset is modified according to six distinct theft patterns and subjected to Min-Max normalization to eliminate the influence of differing feature scales. Subsequently, the model extracts multi-scale local features via convolutional layers and further expands the receptive field using dilated convolution, thereby effectively capturing subtle variations amid environmental interference. Thereafter, BiLSTM is utilized to model the sequential data in both forward and backward directions, comprehensively capturing long-range dependencies and contextual information. To enhance the model′s robustness and generalization capability, dropout and dynamic learning rate adjustment mechanisms are incorporated. Finally, experiments are conducted under binary, six-class, and seven-class classification tasks with varying training set ratios. The experimental results demonstrate that the proposed method significantly outperforms traditional approaches in terms of accuracy, AUC, and F1-score, thereby validating its effectiveness in electricity theft detection and type discrimination under complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

韦江衡,韦杏秋,杨舟,唐宇靖,苗强.基于CNN-BiLSTM模型的多场景窃电检测与类型判别研究[J].电子测量技术,2025,48(14):65-73

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码