YOLO检测下基于ETC-DDPG算法的无人机视觉跟踪
DOI:
CSTR:
作者:
作者单位:

1.河海大学数学学院 南京 211100; 2.南京邮电大学现代邮政学院 南京 210003; 3.河海大学人工智能与自动化学院 常州 213000

作者简介:

通讯作者:

中图分类号:

TP273; TP18; TP391.9; TN957

基金项目:

航空科学基金(2024Z071108001)、教育部重点实验室开放基金(Scip20240111)、安徽省普通高校交通信息与安全重点实验室开放课题(KLAHEI180188)、中央高校业务费(B240203012)项目资助


Event-triggered curriculum DDPG for UAV visual tracking with YOLO detection
Author:
Affiliation:

1.School of Mathematics, Hohai University,Nanjing 211100, China; 2.School of Modern Posts, Nanjing University of Posts and Telecommunications,Nanjing 210003, China; 3.College of Artificial Intelligence and Automation, Hohai University,Changzhou 213000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升无人机动态目标跟踪效率和精度,提出结合DDPG算法和YOLO目标检测技术的ETC-DDPG算法。该算法引入事件触发机制,通过动态调整策略更新频率来提高算法的决策效率;引入课程学习构建分阶段训练框架,逐步提升无人机对复杂任务的适应性。实验结果表明,ETC-DDPG算法能够有效提升动态目标跟踪任务的跟踪效率和训练过程稳定性,并能减少计算资源需求,成功率可达93.357%,相比原始DDPG算法和ETC-TD3算法各项指标都有所提升,其中成功率分别提升56.175%和37.1%,并通过消融实验验证了事件触发机制和课程学习的协同作用,为无人机的自主执行任务提供了参考。

    Abstract:

    This paper proposed an Event-triggered Curriculum DDPG algorithm to improve the efficiency and accuracy of dynamic target tracking for UAVs. The algorithm combined Deep Deterministic Policy Gradient (DDPG) and YOLO object detection technology. It introduced an event-triggered mechanism to dynamically adjust the policy update frequency, enhancing decision-making efficiency. Additionally, it incorporated curriculum learning to create a staged training framework, gradually improving the UAV′s adaptability to complex tasks. Experimental results showed that the ETC-DDPG algorithm effectively improved the tracking efficiency of dynamic target tracking task and the stability of training process, and reduced the demand for computing resources, achieving a success rate of 93.357%. Compared with the original-DDPG algorithm and ETC-TD3 algorithm, the success rate is improved by 56.175% and 37.1% respectively. The collaborative effect of the event-triggered mechanism and curriculum learning was verified by ablation experiment, providing a reference for autonomous task execution in UAVs.

    参考文献
    相似文献
    引证文献
引用本文

庄晶颖,刘磊,闫冬梅,梁成庆. YOLO检测下基于ETC-DDPG算法的无人机视觉跟踪[J].电子测量技术,2025,48(22):129-140

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告