基于改进YOLOv8的受电弓燃弧检测算法
DOI:
CSTR:
作者:
作者单位:

河北科技大学机械工程学院 石家庄 050018

作者简介:

通讯作者:

中图分类号:

TP183;TN40

基金项目:

河北省重点研发计划项目(20310806D)资助


Pantograph arc detection algorithm based on improved YOLOv8
Author:
Affiliation:

School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有受电弓燃弧检测算法对高精度和轻量化的需求,提出一种基于YOLOv8的轻量级受电弓燃弧检测算法RIL-YOLO。首先,结合RepConv模块和GhostNet思想,设计了一种轻量级特征提取模块RELAN,降低参数量和计算量的同时,保持模型对燃弧特征提取的性能;其次,针对小燃弧漏检问题,增加一个小目标检测模块,并使用加权双向特征金字塔网络结构实现更高层次的特征融合,提高模型对小目标的检测能力;为解决小目标检测模块带来的计算量大幅增加的问题,对颈部网络进行重构,降低计算量的增加;最后,设计轻量化细节增强检测头来替换YOLOv8检测头,在减少模型参数的同时提高模型对细节特征的捕获能力。研究结果表明,与相较于YOLOv8,RIL-YOLO在参数量降低66%与计算量降低13.6%的情况下,平均精度AP@0.5、AP@0.5:0.95分别提升了5.2%、3.7%,检测速度达到112.4 fps,能够有效实现燃弧快速、准确检测。该方法为受电弓燃弧实时检测提供理论方法参考。

    Abstract:

    Aiming at the problems of low detection accuracy and false detection and missed detection of small arcing in the existing pantograph arcing detection model, a lightweight pantograph arcing detection algorithm RIL-YOLO based on improved YOLOv8 is proposed. Firstly, combined with RepConv module and GhostNet idea, a lightweight feature extraction module RELAN is designed to reduce the amount of parameters and calculations while maintaining the performance of the model for arc feature extraction. Secondly, aiming at the problem of small arc missed detection, a small target detection module is added, and a weighted bidirectional feature pyramid network structure is used to achieve a higher level of feature fusion, so as to improve the detection ability of the model for small targets. In order to solve the problem that the computational cost of the small target detection module is greatly increased, the neck network is reconstructed, the reconstructed IBiFPN structure only increases the computational complexity by 0.3G while ensuring the accuracy of the model. Finally, a lightweight detail enhancement detection head is designed to replace the YOLOv8 detection head, which improves the model ′s ability to capture detailed features while reducing model parameters. The research results show that compared with the YOLOv8n model, the RIL-YOLO model has an average accuracy of AP@0.5 and AP@0.5:0.95 increased by 5.2% and 3.7%, respectively, when the number of model parameters is reduced by 66% and the calculation amount is reduced by 13.6%. The detection speed reaches 112.4 fps,which can effectively realize rapid and accurate detection of ignition arc. The method provides theoretical method reference for real-time detection of pantograph arc.

    参考文献
    相似文献
    引证文献
引用本文

张书朝,彭立强,郭阿康,王立新.基于改进YOLOv8的受电弓燃弧检测算法[J].电子测量技术,2025,48(19):95-105

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码