基于时空特征融合的网络异常流量检测方法
DOI:
CSTR:
作者:
作者单位:

四川大学网络空间安全学院 成都 610065

作者简介:

通讯作者:

中图分类号:

TN915.08

基金项目:


Network anomaly traffic detection method based on spatial-temporal feature fusion
Author:
Affiliation:

School of Cyber Science and Engineering, Sichuan University,Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统网络异常流量检测模型存在数据时空特性利用不充分和泛化能力较差等问题,提出一种基于多头注意力机制和时空特征融合的网络异常流量检测方法。通过卷积神经网络(CNN)提取流量数据的空间局部特征,并引入多头注意力机制对特征进行多角度自适应重加权,从而提升模型对异常流量的敏感度。将重加权后特征输入双向长短期记忆网络(BiLSTM),挖掘流量数据中的长距离时序依赖关系。最后,利用Softmax对流量数据进行分类与识别。在公开数据集NSL-KDD和CIC-IDS-2017上开展实验,检测准确率分别为85.40%和99.41%,验证了该方法在异常流量检测任务中的有效性。

    Abstract:

    Aiming at the problems of insufficient utilization of data spatial-temporal characteristics and poor generalization ability of e traditional network traffic anomaly detection methods, a traffic anomaly detection method based on multi-head attention mechanism and spatial-temporal feature fusion is proposed. The convolutional neural network(CNN) is utilized for the extraction of the spatial local features presented within the traffic data. The multi-head attention mechanism is introduced to achieve multi-angle adaptive reweighting of key features through parallel computation of multiple attention heads, thus improving the sensitivity of the model to abnormal traffic. The re-weighted features are then input into the bidirectional long short-term memory network(BiLSTM) to mine the long-distance temporal dependencies in the traffic data. Finally, Softmax is used to classify and identify the traffic data. Experiments are carried out on the publicly available dataset NSL-KDD and CIC-IDS-2017 with a detection accuracy of 85.40% and 99.41%, respectively, which verifies the effectiveness of the method in the task of network traffic anomaly detection.

    参考文献
    相似文献
    引证文献
引用本文

徐仪帆.基于时空特征融合的网络异常流量检测方法[J].电子测量技术,2025,48(14):19-25

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码