动态场景下融合稀疏光流的语义视觉SLAM算法
DOI:
CSTR:
作者:
作者单位:

1.浙江科技大学自动化与电气工程学院 杭州 310023;2.浙江省智能机器人感知与控制国际科技合作基地 杭州 310023

作者简介:

通讯作者:

中图分类号:

TP391.41;TN98

基金项目:

浙江省基础公益研究计划项目(LTGG23F030001)、浙江省尖兵领雁计划项目(2022C04012)资助


Semantic visual SLAM algorithm with sparse optical flow in dynamic scenarios
Author:
Affiliation:

1.College of Automation and Electrical Engineering, Zhejiang University of Science and Technology,Hangzhou 310023,China; 2.Zhejiang International Sci-Tech Cooperation Base for Intelligent Robot Perception,Hangzhou 310023,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂动态场景中视觉SLAM因动态干扰而导致的特征点匹配精度下降及地图构建误差增大等问题,提出一种结合语义分割与稀疏光流的动态视觉SLAM算法。首先,引入自适应阈值策略,有效提升算法在复杂环境中获取特征点的能力;其次,将DY-Conv模块嵌入U-Net语义分割网络中,并结合LK稀疏光流场,实现对动态物体的精准检测与分割,有效提高视觉SLAM在动态场景中的特征匹配精度和鲁棒性;最后,基于TUM数据集和实际场景进行算法有效性验证。实验结果表明,改进U-Net算法的平均分割精度由原算法的92.1%提高到94.5%,而本文所提出的语义视觉SLAM算法相比于ORB-SALM3,图像处理速度提升60.13%,并且在三组高动态序列公开数据集上的位姿估计精度分别提升43.75%、77.33%和64.00%;另外基于TUM数据集和实际场景所生成的稠密三维点云地图,进一步表明本文算法可有效抑制动态因素的干扰,从而提升地图构建的准确性。

    Abstract:

    Aiming at the problems of feature point matching accuracy degradation and map construction error increase caused by dynamic interference in visual SLAM in complex dynamic scenes, a dynamic visual SLAM algorithm combining semantic segmentation and sparse optical flow is proposed. Firstly, an adaptive thresholding strategy is introduced to effectively improve the algorithm′s ability to acquire feature points in complex environments. Secondly, the DY-Conv module is embedded into the U-Net semantic segmentation network and combined with the LK sparse optical flow field to achieve accurate detection and segmentation of dynamic objects, which effectively improves the feature matching accuracy and robustness of visual SLAM in dynamic scenes. Finally, the validity of the algorithm is verified based on the TUM dataset and real scenes. Experimental results show that the improved U-Net algorithm increases the average segmentation accuracy from 92.1% of the original algorithm to 94.5%. Meanwhile, the proposed semantic visual SLAM algorithm improves image processing speed by 60.13% compared to ORB-SLAM3, and enhances pose estimation accuracy by 43.75%, 77.33% and 64.00% on three high-dynamic sequence public datasets, respectively. Additionally, the dense 3D point cloud maps generated based on the TUM dataset and real-world scenarios further demonstrate that the proposed algorithm can effectively suppress the interference of dynamic factors, thereby improving the accuracy of map construction.

    参考文献
    相似文献
    引证文献
引用本文

侯余鑫,介婧,侯北平,郑慧,于爱华.动态场景下融合稀疏光流的语义视觉SLAM算法[J].电子测量技术,2025,48(16):60-69

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告