基于改进YOLOv8的复杂场景下安全帽佩戴检测算法
DOI:
CSTR:
作者:
作者单位:

1.上海应用技术大学计算机科学与信息工程学院 上海 201418;2.上海应用技术大学化学与环境工程学院 上海 201418

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

上海应用技术大学协同创新基金-跨学科、多领域合作研究专项(XTCX2024-03)资助


Helmet detection algorithm in complex scenarios based on improved YOLOv8
Author:
Affiliation:

1.School of Computer Science and Information Engineering, Shanghai Institute of Technology,Shanghai 201418, China; 2.School of Ecological Technology and Engineering, Shanghai Institute of Technology,Shanghai 201418, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决复杂施工场景中安全帽佩戴检测因人员密集、遮挡和目标体积小,导致模型出现漏检和误检的问题,本文提出一种基于改进的YOLOv8的安全帽佩戴检测算法。首先,引入基于大核深度可分离卷积的CMUNeXtBlock模块,通过将深度可分离卷积和反向瓶颈技术相结合,提高网络的全局感知能力;其次,设计C2FICB模块替换主干网络中的C2f,融合不同通道和空间位置之间的语义特征,强化网络对多尺度的泛化性,并在颈部网络设计P2微尺度目标检测层,提高网络捕捉局部特征的能力;最后,提出一种基于感受野注意力卷积的RFAConv head(RFAHead)检测头,优化空间特征的表达,进一步强化模型对全局特征的提取能力。实验结果表明在数据集Safety helmet上,改进后的模型比基线模型mAP@0.5的值提升了5.2%,mAP@0.5-0.95的值提升了3.9%,有效提高安全帽佩戴检测模型的精度。

    Abstract:

    In order to solve the problem of missing detection and false detection in the helmet wearing detection model in complex construction scenes due to dense personnel, occlusion and small target size, this paper proposes an improved YOLOv8 based helmet wearing detection algorithm. Firstly, the CMUNeXtBlock module based on large core depth-separable convolution is introduced to improve the global awareness of the network by combining depth-separable convolution with reverse bottleneck technology. Secondly, the C2FICB module is designed to replace the C2f in the backbone network and integrate the semantic features between different channels and spatial locations to strengthen the network′s multi-scale generalization. Moreover, P2 micro-scale target detection layer is designed in the neck network to improve the network′s ability to capture local features. Finally, a RFAConv head(RFAHead) detection head based on the convolution of receptive field attention is proposed to optimize the expression of spatial features and further strengthen the ability of the model to extract global features. Experimental results show that in the Safety helmet dataset, the value of the improved model is increased by 5.2% and that of mAP@0.5-0.95 by 3.9% compared with the baseline model, respectively, effectively improving the accuracy of the safety helmet wearing detection model.

    参考文献
    相似文献
    引证文献
引用本文

杨瑞君,李悦东,叶璟.基于改进YOLOv8的复杂场景下安全帽佩戴检测算法[J].电子测量技术,2025,48(17):188-198

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告