面向电网设备盘点的智能增强型标签识别方法
DOI:
CSTR:
作者:
作者单位:

国网江苏省电力有限公司常州供电分公司 常州 213000

作者简介:

通讯作者:

中图分类号:

TN929.5

基金项目:

国网双创孵化培育资金(JF2024024)项目资助


Intelligent enhanced label recognition method for inventory of power grid equipment
Author:
Affiliation:

State Grid Jiangsu Electric Power Co., Ltd., Changzhou Power Supply Branch,Changzhou 213000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在智慧电网的整体发展趋势下,为解决大规模设备管理中效率低下的问题,本文设计并提出了电网大规模设备盘点智慧系统。该系统通过整合机器人巡检技术、物联网数据采集手段及智能化数据处理技术,为大规模电网设备的自动化巡检与高效管理提供了一种系统化的解决方案。然而,RFID标签冲突问题成为该系统在密集标签场景下高效运行的关键瓶颈。为此,本文在智慧系统的设计基础上,面向该系统提出了一种智能增强型动态帧队列算法(EFQ)。EFQ算法通过动态帧调整与优先级优化策略,提升了高密度场景下的识别效率与系统稳定性。本文对EFQ算法与IABS算法、ICT算法的性能表现进行了对比。实验结果表明,EFQ算法在吞吐量和冲突率方面表现出显著优势,冲突率降低超过30%,系统效率提升约15%。尽管在识别时间上与其他算法相比无显著差异,但EFQ算法的整体性能更加稳定,尤其适用于密集标签场景的设备管理需求。

    Abstract:

    Under the overall development trend of smart grid, in order to solve the problem of inefficiency in large-scale equipment management, this paper designs and proposes a large-scale equipment inventory intelligent system for power grid. The system provides a systematic solution for the automatic inspection and efficient management of large-scale power grid equipment by integrating robot inspection technology, Internet of Things data collection means and intelligent data processing technology. However, the problem of RFID tag conflict has become a key bottleneck for the efficient operation of the system in dense tag scenarios. Therefore, based on the design of the intelligent system, this paper proposes an intelligent enhanced Dynamic Frame Queuing (EFQ) algorithm for the system. The EFQ algorithm improves the recognition efficiency and system stability in high-density scenarios through dynamic frame adjustment and priority optimization strategies. In this paper, the performance of the EFQ algorithm is compared with the IABS algorithm and the ICT algorithm. Experimental results show that the EFQ algorithm has significant advantages in terms of throughput and collision rate, the collision rate is reduced by more than 30%, and the system efficiency is increased by about 15%. Although there is no significant difference in recognition time compared with other algorithms, the overall performance of the EFQ algorithm is more stable, especially for device management requirements in dense labeling scenarios.

    参考文献
    相似文献
    引证文献
引用本文

黄申茂,庄宇峰,路纯,宋子豪.面向电网设备盘点的智能增强型标签识别方法[J].电子测量技术,2025,48(17):66-72

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告