复杂背景下电力杆塔部件隐患检测模型研究
DOI:
CSTR:
作者:
作者单位:

1.新疆大学机械工程学院 乌鲁木齐 830047; 2.西安交通大学机械工程学院 西安 710049

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

自治区“天山英才”科技创新领军人才项目(2023TSYCLJ0051)、陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-160)资助


Research on power tower components hazard detection model under complex background
Author:
Affiliation:

1.School of Mechanical Engineering, Xinjiang University,Urumqi 830047, China; 2.School of Mechanical Engineering, Xi′an Jiaotong University, Xi′an 710049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文基于YOLOv8n模型提出了一种改进的电力杆塔部件隐患检测模型CML-YOLO,旨在解决复杂背景下多尺度电力杆塔部件隐患检测模型精度低、参数量多、计算量高、模型权重大的问题,主要应用于破损绝缘子、锈蚀防震锤和鸟巢等隐患目标的检测。首先,设计了C2f-HEFE模块,通过对检测目标边缘信息增强,提升了背景与目标的区分能力。其次,设计了MSFFPN模块,通过多尺度特征融合,增强了模型对多尺度目标的适应性。最后,设计了轻量化LSBDH模块,降低了模型的参数量和计算量。实验结果表明,CML-YOLO相比基线模型YOLOv8n,平均精度提升了4.4%,参数量、计算量和模型权重分别降低了33.9%、20.9%和26.4%。该模型在提升了检测性能的同时,实现了轻量化,在模型检测精度和模型权重方面实现了较好的平衡。

    Abstract:

    Based on the YOLOv8n model, this paper proposes a improved hazard detection model CML-YOLO for power tower components. It aims to solve the problems of low accuracy, large number of parameters, high computational complexity and large model weight of multi-scale power tower components hazard detection model under complex background. It is mainly used for the detection of targets such as damaged insulators, rusted dampers and bird nests. Firstly, the C2f-HEFE module is designed to enhance the ability to distinguish between background and target by enhancing the edge information. Secondly, the MSFFPN module is designed, and the multi-scale feature fusion is used to enhance the adaptability of the model to multi-scale targets. Finally, the lightweight LSBDH module is designed to reduce the number of parameters and calculation amount of the model. Experimental results show that compared with the baseline model YOLOv8n, the mean average precision of CML-YOLO is improved by 4.4%, and the number of parameters, calculation amount and model weight are reduced by 33.9%, 20.9% and 26.4% respectively. This model improves detection performance while maintaining its lightweight characteristics, achieving a good balance between model detection accuracy and model weight.

    参考文献
    相似文献
    引证文献
引用本文

梁伦玮,张小栋,胡宇哲,陶庆.复杂背景下电力杆塔部件隐患检测模型研究[J].电子测量技术,2025,48(18):1-12

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告