频域特征和硬负实例筛选的乳腺癌全切片分类
DOI:
CSTR:
作者:
作者单位:

1.宁夏大学信息工程学院 银川 750021; 2.宁夏“东数西算”人工智能与信息安全重点实验室 银川 750021; 3.宁夏大学新华学院 银川 750021; 4.宁夏医科大学总医院病理科 银川 750021

作者简介:

通讯作者:

中图分类号:

TP391;TN29

基金项目:

国家自然科学基金(62062057)、宁夏自然科学基金(2024AAC03063,2024AAC03325)项目资助


Breast cancer whole-slide image classification with frequency domain features and hard negative screening
Author:
Affiliation:

1.School of Information Engineering, Ningxia University,Yinchuan 750021, China; 2.Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West,Yinchuan 750021, China; 3.Xinhua College, Ningxia University,Yinchuan 750021, China; 4.Department of Pathology, General Hospital of Ningxia Medical University,Yinchuan 750021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    乳腺癌全切片图像分类对精准诊断至关重要,然而,现有基于伪标签的多实例学习方法存在伪标签质量不高和选取硬负实例比例不合理的问题,为解决上述问题,本文提出一种结合频域特征与动态硬负实例筛选的多实例学习方法。首先,设计多尺度频域特征编码模块,通过频域残差连接与跨层特征融合,增强高频细节与复杂纹理表征;其次,提出双分支包预测模块,基于注意力机制动态调整实例权重,缓解异质性导致的特征稀释,优化伪标签生成质量;最后,提出动态硬负实例伪标签挖掘策略,通过渐进式增加硬负实例比例以提升模型获取区分性特征的能力。实验结果显示,在Camelyon和TCGA-BRCA数据集上,ACC、AUC、Precision、Recall分别提升了3.15%、1.72%、3.06%、2.12%和2.32%、2.79%、2.22%、2.22%,验证了方法的有效性。

    Abstract:

    Breast cancer whole slide image classification is critical for accurate diagnosis. However, existing pseudo-label-based multiple instance learning methods suffer from low-quality pseudo-labels and suboptimal selection of hard negative instance ratios. To address these issues, this paper proposes a multiple instance learning method combining frequency domain features and dynamic hard negative instance screening. First, a multi-scale frequency domain feature encoding module is designed, which enhances high-frequency details and complex texture representations through frequency domain residual connections and cross-layer feature fusion. Second, a dual-branch bag prediction module is proposed to dynamically adjust instance weights via an attention mechanism, mitigating feature dilution caused by heterogeneity and improving pseudo-label generation quality. Finally, a dynamic hard negative instance pseudo-label mining strategy is introduced, progressively increasing the proportion of hard negative instances to enhance the model’s ability to capture discriminative features. Experimental results on the Camelyon and TCGA-BRCA datasets demonstrate significant improvements: ACC, AUC, Precision, and Recall increased by 3.15%、1.72%、3.06%、2.12% and 2.32%、2.79%、2.22%、2.22%, respectively. These advancements validate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

鲍刘珍,贾伟,赵雪芬,孔德凤,江海峰.频域特征和硬负实例筛选的乳腺癌全切片分类[J].电子测量技术,2025,48(19):168-182

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码