基于深度学习的三维点云与IMU融合里程计
DOI:
CSTR:
作者:
作者单位:

上海应用技术大学智能技术学部 上海 201418

作者简介:

通讯作者:

中图分类号:

TN242;TN958. 98

基金项目:

上海市自然科学基金(21ZR1462600)项目资助


Deep learning-based 3D point cloud and IMU fusion odometry
Author:
Affiliation:

School of Computer Science and Information Engineering, Shanghai Institute of Technology,Shanghai 201418, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    里程计是即时定位与建图技术的重要组成部分,但是现有的里程计算法多数使用点云数据或图片数据等单一数据,没有充分利用多数据融合来提升轨迹估计的精度,同时在复杂环境和特征缺失的场景中轨迹估计的精度不足。针对此问题,本文提出了一种融合激光雷达数据和惯性测量单元数据的深度网络3DPointLIO。首先结合特征金字塔网络和权重注意力机制来降低场景中动态信息的影响,提高点云特征的鲁棒性。然后在IMU数据处理网络中,通过卷积网络和门控循环单元相结合的方式来降低原始IMU数据中的噪声影响,并使用双向长短期记忆网络来提取降噪后的IMU数据的时序特征。最后通过多层线性层构成的位姿估计网络进行平移和旋转的估计。在开源数据集KITTI上进行验证,实验结果表明,该里程计算法相比于基准模型在旋转的估计上提升了0.76°,平移的估计上提升了2.17%。与其他常见的里程计算法相比,旋转和平移的估计也表现出较好的效果,特别是在旋转的估计上具有更高的精度。

    Abstract:

    Odometry is a crucial component of Simultaneous Localization and Mapping (SLAM) technology. However, most existing odometry algorithms rely on single data sources such as point cloud data or image data, failing to fully leverage multi-data fusion to improve trajectory estimation accuracy. Additionally, these algorithms often exhibit insufficient accuracy in complex environments and feature-deficient scenarios. To address these issues, this paper proposes a deep network called 3DPointLIO, which fuses LiDAR data and Inertial Measurement Unit (IMU) data. Firstly, a feature pyramid network combined with a weight attention mechanism is introduced to reduce the impact of dynamic information in the environment and enhance the robustness of point cloud features. Secondly, in the IMU data processing network, a convolutional network is integrated with Gated Recurrent Units (GRUs) to mitigate noise in raw IMU data, and a Bidirectional Long Short-Term Memory (BiLSTM) network is employed to extract temporal features from the denoised IMU data. Finally, a pose estimation network composed of multiple linear layers is used to estimate translation and rotation. The proposed algorithm is validated on the open-source KITTI dataset. Experimental results demonstrate that, compared to the baseline model, the proposed odometry algorithm improves rotation estimation by 0.76° and translation estimation by 2.17%. Furthermore, it outperforms other common odometry algorithms in both rotation and translation estimation, particularly achieving higher accuracy in rotation estimation.

    参考文献
    相似文献
    引证文献
引用本文

张乔,黄瑞,张裕,陈筱彦.基于深度学习的三维点云与IMU融合里程计[J].电子测量技术,2025,48(10):186-195

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告