基于特征结合的MIMO-OFDM系统调制识别算法
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学通信与信息工程学院 重庆 400065

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

重庆市自然基金(cstc2021jcyj-msxmX0836)项目资助


Modulation recognition algorithm for MIMO-OFDM systems based on feature combination
Author:
Affiliation:

School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications,Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前非协作通信多输入多输出正交频分复用(MIMO-OFDM)系统中的子载波调制识别方法,存在低信噪比下识别精度不够高,识别阶数不够高的问题。对此,本文提出一种基于特征结合的调制识别算法。首先对接收信号进行预处理;接着提取信号的同相正交分量并计算信号的小波变换、四次方谱、高阶累积量、零中心归一化瞬时幅度作为输入特征;接着将输入特征送入神经网络进行训练;最后对MIMO-OFDM系统子载波进行调制识别。实验结果表明,本文提出的算法能够有效识别BPSK、QPSK、8PSK、16QAM、64QAM、128QAM共6种信号,且识别精度在信噪比为6 dB时可达到90%。

    Abstract:

    Currently, the subcarrier modulation recognition methods in non-cooperative multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems suffer from insufficient recognition accuracy under low signal-to-noise ratio (SNR) conditions and limitations in recognizing higherorder modulation schemes. To address these issues, this paper proposes a modulation recognition algorithm based on feature fusion. First, the received signal undergoes preprocessing. Subsequently, the in-phase and quadrature (I/Q) components of the signal are extracted, and multiple features—including wavelet transform, fourth-power spectrum, higher-order cumulants, and zero-centered normalized instantaneous amplitude—are computed as input features. These features are then fed into a neural network for training. Finally, the modulation scheme of the MIMO-OFDM subcarriers is classified. Experimental results demonstrate that the proposed algorithm effectively recognizes six modulation types: BPSK, QPSK, 8PSK, 16QAM, 64QAM and 128QAM, achieving a recognition accuracy of 90% at an SNR of 6 dB.

    参考文献
    相似文献
    引证文献
引用本文

李璋培,张天骐,孙浩源,钟扬.基于特征结合的MIMO-OFDM系统调制识别算法[J].电子测量技术,2025,48(19):106-114

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码